If two identical batteries were connected in series, the resulting voltage would double, the available current would remain the same, and the available power would double.
Note that, by Ohm's Law and the Power Law, doubling the voltage into a set resistance would double the current and quadruple the power. This is inconsistent with the battery's ability to provide a certain current, so you would also need to double the load resistance, otherwise you could damage the battery.
The result when voltage is multiplied by current is power.
Voltage in cells and batteries drives the flow of electric current in circuits. A higher voltage means more energy is available to push the electrons through the circuit, increasing the rate of energy transfer. Conversely, a lower voltage will result in slower energy transfer.
No. They will result in greater voltage.
The current in the light bulb will be greater when connected to the 200-v source compared to the 110-v circuit, assuming the resistance of the light bulb remains constant. This is because current is directly proportional to voltage in an electrical circuit according to Ohm's Law (I = V/R), so a higher voltage will result in a greater current flow through the bulb.
If you connect each pole of one battery to the opposite pole of the other, you will have completed an electrical circuit, and electricity will flow. If you leave them attached like that, eventually you will drain both batteries. It's also possible that one or both batteries could explode due to the heat produced by this rapid flow of current. The above may take place when the voltage is low. but in case of relative high voltage the following phenomenon is likely: According to universally recognized, Ohm's law: i = v/r (where i = current, v = voltage, and r = resistance) When two poles are connected through a simple wire (assumed to of no resistance) the result of the above expression becomes infinite (anything divided by zero). That means infinite current flows which may cause explosion/big spark/fire with a loud report.
I haven't studied this for awhile, but... I assume by cell, you mean a voltage supply, like a battery. It depends on what else is in the circuit. If your circuit has a typical amount of resistance, then connecting the cells in series (as opposed to in parallel) will result in the largest voltage. Higher voltage means greater current across a resistor. However, if the resistance of the circuit is very low (like in a short circuit), then your batteries' own internal resistance may be the most significant factor, and batteries arranged in parallel may be able to sustain a higher current.
Adding additional lamps has no effect on the supply voltage supplied to you home. If the lamps are connected in series, then the sum of voltage-drops appearing across each lamp will equal the supply voltage. If the lamps are connected in parallel, then the voltage across each lamp will equal the supply voltage.
Current is not induced into a coil. It's voltage that is induced into a coil. If the coil is connected to a load, or even short circuited, then a current will flow as a result of the induced voltage -but it's the voltage, not the resulting current, that's induced!Voltage is induced into a coil because the the changing magnetic field, due to the change in current (0 to Imax or vice versa) applied to that coil. The process is called 'self induction'.
R = V / I (Ohms Law) A greater voltage results in more current. In the particular case of a light bulb, the resistance will change with current because its temperature changes. We assume here that the bulb is rated to take 200V.
In the zener region of a diode, there is a relatively flat, low slope line for voltage as a function of current. As a result, increasing current in the zener region does not result in a significant increase in voltage - hence, voltage stability.
Adding more batteries to a circuit with light bulbs will increase the brightness of the bulbs. This is because the additional batteries will provide more voltage, which allows for a higher current to flow through the circuit. As a result, the bulbs will emit more light due to the increased energy supplied.
Ohm's Law: V = I*R, so Voltage and Current are directly proportional and a change in voltage will result in a proportional change in current. (The current reduces by the same factor)