answersLogoWhite

0

it is released (emitted) as part of the electromagnetic spectrum.

User Avatar

Sigurd Nolan

Lvl 13
3y ago

What else can I help you with?

Related Questions

When an atom returns to its ground state what happens to the excess energy of the atom?

it is released (emitted) as part of the electromagnetic spectrum.


When an atom in the excited state returns to its ground state what happens to the excess energy of the atom?

When an atom in an excited state returns to its ground state, it releases the excess energy in the form of electromagnetic radiation, typically as a photon. The energy of the emitted photon corresponds to the difference in energy levels between the excited state and the ground state. This process is fundamental to phenomena such as fluorescence and the emission spectra of elements.


When an atom in an excited state returns to it's ground state what happens to the excess energy or the atom?

When an atom in an excited state returns to its ground state, it releases the excess energy it gained during excitation, typically in the form of electromagnetic radiation, such as photons. This process is known as spontaneous emission. The energy of the emitted photon corresponds to the difference in energy levels between the excited state and the ground state. If the transition occurs in a controlled manner, such as in lasers, the emitted photons can be coherent and in phase with each other.


How energy is emitted when an atom returns to the ground state?

When an atom returns to the ground state, it releases the excess energy in the form of light. This process is known as emission of photons. The energy of the emitted photon is determined by the difference in energy levels between the initial and final states of the atom.


Which of the following correctly explains how energy is emitted when an atom returns to the ground state?

There is insufficient information in the question to properly answer it. You did not provide the list of "the following". In general, however, if it is the nucleus that returns to ground state, then gamma ray emission is the mechanism. It it is the electron cloud the returns to ground state, then x-ray emission is the mechanism. The end result is the same - a photon is emitted with a certain energy - only the mechanism differs.


When an atom in an excited state returns to it's ground state what happens to the energy?

When an atom in an excited state returns to its ground state, it releases energy in the form of electromagnetic radiation, typically as light or photons. The energy released corresponds to the difference in energy between the excited state and the ground state. This phenomenon is fundamental to processes such as fluorescence and the emission spectra of elements.


What is the amount of energy released by an electron as it returned to ground state?

The energy released by an electron as it returns to the ground state is equal to the difference in energy between its initial excited state and the ground state. This energy is typically released in the form of a photon with a specific wavelength determined by the energy difference.


What happens when an electron returns to its ground state from it's excited state?

A photon will be released!


When a electron returns to its stable or ground state is emits?

When an electron returns to its stable or ground state, it emits a photon of light. This process is known as emission and is responsible for various forms of light emission including fluorescence, phosphorescence, and luminescence. The energy of the emitted photon is equivalent to the energy difference between the higher energy state and the lower stable state of the electron.


What can be said of the amount of energy that an electron absorbs when it is excited compared to the amount of energy that it releases when it returns to ground state?

When an electron is excited, it absorbs a specific amount of energy to move to a higher energy state. When it returns to its ground state, it releases this absorbed energy in the form of electromagnetic radiation. The energy released is equal to the energy absorbed during excitation, following the principle of conservation of energy.


What does it mean when a horse paws the ground?

When a horse paws the ground, it usually means they are feeling anxious, frustrated, or impatient. It can also be a sign of discomfort or a way for the horse to release excess energy.


What happens if the ground wire is not connected in an electrical circuit?

If the ground wire is not connected in an electrical circuit, there is an increased risk of electric shock or fire because the ground wire helps to safely redirect excess electricity away from the circuit.