it doesn't
Aqueous lead nitrate plus aqueous sodium iodide produce solid lead iodide and aqueous sodium nitrate.
The compound precipitate formed when potassium iodide is added to a solution of lead nitrate is lead iodide, which is a yellow precipitate. This reaction is a double displacement reaction where the potassium ion and nitrate ion switch partners to form potassium nitrate and lead iodide.
When a solution of potassium iodide is added to lead nitrate, a yellow precipitate of lead iodide is formed. This is a double displacement reaction where the cations and anions switch partners to form the products.
A white precipitate of silver iodide forms due to the reaction between silver ions and iodide ions, leaving potassium nitrate in solution. This reaction is a double displacement reaction and is used as a test for iodide ions.
Potassium iodide is added in excess to ensure that all available lead nitrate has reacted to form lead iodide. This helps to maximize the yield of lead iodide and ensures that there is no excess lead nitrate remaining in the solution.
A yellow precipitate of lead iodide is formed due to the reaction between potassium iodide and lead nitrate. This reaction is a double displacement reaction, where the potassium from potassium iodide swaps places with the lead from lead nitrate, forming the insoluble lead iodide.
You can test for the presence of iodide ions using silver nitrate. When silver nitrate is added to a solution containing iodide ions, a yellow precipitate of silver iodide forms. This precipitate confirms the presence of iodide ions in the solution.
A yellow precipitate of lead iodide forms, while potassium nitrate remains in solution. This reaction is a double displacement reaction with an exchange of ions between the two compounds.
When potassium iodide is added to lead nitrate, a precipitation reaction occurs resulting in the formation of lead iodide, a yellow insoluble solid, and potassium nitrate, which remains in solution. This reaction can be visually identified by the formation of a yellow precipitate.
A yellow precipitate of lead iodide is formed. This is because potassium iodide reacts with lead nitrate to form lead iodide, which is insoluble in water. The reaction can be represented as: 2KI + Pb(NO3)2 → 2KNO3 + PbI2.
A yellow precipitate of silver iodide is formed due to the reaction between potassium iodide and silver nitrate, as silver iodide is insoluble. The reaction can be described by the equation: 2KI (aq) + AgNO3 (aq) → AgI (s) + 2KNO3 (aq)
The reaction that occurs is a double displacement reaction where lead(II) nitrate and potassium iodide switch partners to form solid lead(II) iodide and potassium nitrate solution. This reaction can be represented by the equation Pb(NO3)2 + 2KI -> Pbl2 + 2KNO3.