10 is miles so say its could a diziz
Temperature and amount (number of moles) is kept constant.
because according to kinetic theory number of collisions exert force per unit area(pressure) so when the temperature is constant along with volume then the same number of collisions are taking place per unit time thats why pressure remains constant....
Raising the temperature of a gas will increase its pressure, following the ideal gas law (PV = nRT). As temperature increases, the average kinetic energy of the gas particles also increases, leading to more frequent and forceful collisions with the walls of the container, resulting in higher pressure.
In osmosis, the concentration gradient, temperature, pressure, and size of the particles are typically held constant. In diffusion, the concentration gradient, temperature, size of the particles, and medium in which diffusion is occurring are commonly kept constant.
The pressure increase because pV=k.
If pressure is kept constant, the volume will decrease.If volume is kept constant, the pressure will decrease.
Thermodynamic temperature (absolute temperature) is proportional to the averagekinetic energy of particles in "gases". An increase in temperature will increase theaverage kinetic energy of the particles of the gas and at the same time the particle'skinetic energy distribution gets broader.If pressure of the gas is kept constant, the gas expands (increases its volume).If the volume of the gas is kept constant, the gas pressure increases.
An increase in temperature of a gas kept at constant volume is due to the gas particles gaining kinetic energy. As temperature rises, the average speed of the gas particles increases, causing more collisions with the container walls and resulting in a higher pressure. This increase in pressure is caused by the gas particles hitting the walls more frequently and with more force.
Raising the temperature of a gas increases its pressure when the volume of the gas is kept constant. This is described by the ideal gas law, which states that pressure is directly proportional to temperature when volume is constant. When the temperature of a gas is increased, the average kinetic energy of the gas particles increases, leading to more frequent and forceful collisions with the walls of the container, resulting in higher pressure.
kinetic energy increases with the increase in temperature is a postulate in kinetic molecular theory of matter.if the pressure is kept constant when temperature decreases the kinetic energy of the molecules decreases resulting in decrease in the volume of the gas. Charle's Law state's that For a given mass of dry gas at constant pressure ,volume is directionally proportional to temperature ie V~T
to create annular area so that the diff. pressure can be kept constant.
To find the temperature when pressure is constant, you can use the ideal gas law equation, PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is temperature in Kelvin. You can rearrange the equation to solve for T: T = PV / nR.