The concentration of HCl is 12 molar because it means there are 12 moles of HCl present in 1 liter of solution. This concentration is high compared to typical dilute solutions and is usually used for laboratory or industrial applications that require strong acid solutions.
About 13M. You can assume it is 13M if you don't need an exact concentration (like if you need a ~1M HCl solution for an extraction or whatever) but if you need an exact concentration (for a titration, for example) then you will need to standardize your HCl first.
A 0.1N (Normal) HCl solution is equivalent to a 0.1M (Molar) concentration of HCl. This means that there is 0.1 moles of HCl per liter of solution. So, the percentage concentration of a 0.1N HCl solution would be 0.1%.
The normality of a solution is a measure of the concentration of a solute in a solution. For HCl (hydrochloric acid), the normality would depend on the concentration of the HCl solution. For example, a 1 M (molar) solution of HCl would be 1 N (normal).
To make 1 liter of 0.05 M HCl solution, you would need to dilute concentrated HCl. The concentration of the concentrated HCl would depend on its specific concentration, but you would typically need around 100 mL of concentrated HCl, assuming it is a standard 12 M concentration, to make the desired dilution.
0.1 molar HCl means that there is 0.1 moles of hydrochloric acid dissolved in 1 liter of solution. It indicates the concentration of the acid in the solution, with molarity representing the number of moles of solute per liter of solution.
About 13M. You can assume it is 13M if you don't need an exact concentration (like if you need a ~1M HCl solution for an extraction or whatever) but if you need an exact concentration (for a titration, for example) then you will need to standardize your HCl first.
A 0.1N (Normal) HCl solution is equivalent to a 0.1M (Molar) concentration of HCl. This means that there is 0.1 moles of HCl per liter of solution. So, the percentage concentration of a 0.1N HCl solution would be 0.1%.
The normality of a solution is a measure of the concentration of a solute in a solution. For HCl (hydrochloric acid), the normality would depend on the concentration of the HCl solution. For example, a 1 M (molar) solution of HCl would be 1 N (normal).
To make 1 liter of 0.05 M HCl solution, you would need to dilute concentrated HCl. The concentration of the concentrated HCl would depend on its specific concentration, but you would typically need around 100 mL of concentrated HCl, assuming it is a standard 12 M concentration, to make the desired dilution.
The molar (molecular) mass of hydrochloric acid is found by adding up the atomic masses of both elements in the compound. (appx.)H= 1.0Cl= 35.5HCl= 36.5 grams
0.1 molar HCl means that there is 0.1 moles of hydrochloric acid dissolved in 1 liter of solution. It indicates the concentration of the acid in the solution, with molarity representing the number of moles of solute per liter of solution.
1N HCL is the same as 1 Molar HCl. You take the # of H ions and multiply by the molarity to get the Normality. Usually you buy HCl in concentrated form which is 12 Molar or 12 Normal HCL. You need to dilute the concentrated HCl to get the reduced concentration. Use the formula Molarity Initial x Volume Initial = Molarity Final x Volume Final ex. 12 M HCL x 10 ml = 1 M x 120 ml. So take 10 ml of concentrated HCl and add enough water to make 120 ml. This will give you 120 ml of 1 M (which is 1N) HCl. Venkat Reddy
By dilution in water we can obtain a large range of hydrochloric acid concentrations depending on necessities. As bottled laboratory reagent HCl has concentrations of 25 %, 30-32 % and 37 % (fumans).
6N HCl refers to a 6 molar solution of hydrochloric acid. The strength of the acid solution is determined by its concentration. It is a moderately strong acid that can cause skin irritation and burns upon contact.
The molarity of H+ ions in a 0.17 M HCl solution is also 0.17 M because HCl dissociates completely in water to yield H+ and Cl- ions. Therefore, the concentration of H+ ions is equal to the concentration of HCl in this case.
The pH of a 0.00001 molar HCl solution is 5. HCl is a strong acid, and at this concentration, it would dissociate almost completely in water to produce H+ ions, resulting in a pH of 5.
The Mole is a unit for amount of substance. Molarity, on the other hand, is a unit for concentration of a solution. 1M = 1 mol/dm^3.