All areas don't have the same asorption and reflection areas. Ice covered areqs reflect radiation mores so than vegatation covered areas,etc. Water and land absorb and reflect differently. Cloud covered areas and cloudless areas get different radiation.
The solar radiation that reaches the earths surface from the sun is called INSOLATION
The amount of radiation absorbed by the Earth's surface varies depending on factors such as location, time of day, and cloud cover. On average, about half of the solar radiation that reaches the Earth's atmosphere is absorbed by the surface, where it is then transformed into heat energy.
The amount of radiation received on Earth's surface varies due to factors such as latitude, atmosphere thickness, altitude, and cloud cover. The angle at which the sun's rays hit the Earth's surface also plays a role in the distribution of solar radiation. Areas closer to the equator receive more direct sunlight, leading to higher radiation levels.
Oxygen in the atmosphere helps to absorb and scatter incoming ultraviolet (UV) radiation from the sun. This process occurs in the stratosphere, where oxygen molecules break apart the incoming UV radiation. This absorption and scattering of UV radiation by oxygen prevent a large amount of harmful UV radiation from reaching the Earth's surface.
Due to Earth's spherical shape, the amount of solar radiation received varies based on latitude and angle of incidence. Areas closer to the equator receive more direct sunlight, while those near the poles receive less due to the angle of the sun's rays. Additionally, factors like the atmosphere, cloud cover, and surface albedo can further affect the distribution of solar radiation on Earth's surface.
All areas don't have the same asorption and reflection areas. Ice covered areqs reflect radiation mores so than vegatation covered areas,etc. Water and land absorb and reflect differently. Cloud covered areas and cloudless areas get different radiation.
All of it. Earth doesn't receive a significant amount of radiation through any other means.All of it. Earth doesn't receive a significant amount of radiation through any other means.All of it. Earth doesn't receive a significant amount of radiation through any other means.All of it. Earth doesn't receive a significant amount of radiation through any other means.
Ozone layer contains ozone molecules in abundance. These molecules decompose themselves to absorb ozone.
The surface that most likely absorbs the greatest amount of insolation is letter D, which represents a vertical surface facing the Sun. This orientation allows the surface to directly receive the Sun's rays, maximizing the amount of solar radiation absorbed.
radiation balance
The amount of energy absorbed or reflected by Earth's surface is influenced by factors such as surface albedo, surface characteristics (e.g. vegetation, water bodies), and atmospheric conditions (e.g. clouds, aerosols). Different surfaces have different albedos, which determine how much solar radiation is absorbed versus reflected. Additionally, atmospheric components can impact the amount of energy reaching and interacting with the surface.
That doesn't depend on the temperature, but on the amount of UV radiation you receive.