because these two subnet are reserve
The last subnet in a subnetted network is typically reserved for broadcast addresses, which are used to send data to all devices on that subnet. This means that the broadcast address cannot be assigned to any individual device. As a result, the last subnet is effectively unusable for host assignments, limiting the number of available subnets for actual device connections.
because that is the last number of the subnet. the last number in a subnet is used as the broadcast domain. the first number is also not usable. an example would be: id 192.168.20.XX subnet 0f 255.255.255.128 192.168.20.0 and 192.168.20.127 may not be used and 192.168.20.128 starts the next subnet making 192.168.20.128 and 192.168.20.255 not usable
In a subnet mask, the last octet value of 252 corresponds to the binary representation of 11111100. This means that the first six bits are used for the network part, while the last two bits are for the host part. Therefore, a subnet mask of 255.255.255.252 allows for only two usable IP addresses within that subnet.
It must be an IP address in the same subnet. Other than that, the network designer has the flexibility to assign any IP address in the same subnet. Quite often, the first or last IP addresses in a subnet are used, so if a certain interface on this router has IP address 10.0.5.1, and the network mask is 255.255.255.0, I would strongly suspect that the other router has IP address 10.0.5.2 (10.0.5.0 can't be used for this subnet).For serial (point-to-point) connections, to save address space, quite often a subnet /30 is used (that is, a subnet mask of 255.255.255.252), in which case the other router has the only other usable IP address in the subnet. For example, if this router has IP address 10.0.8.26 and a subnet mask 255.255.255.252, the subnet has addresses in the range 10.0.8.24 - 10.0.8.27, but since the first and last addresses can't be used, the only option for a router or other machine on the other end is 10.0.8.25.It must be an IP address in the same subnet. Other than that, the network designer has the flexibility to assign any IP address in the same subnet. Quite often, the first or last IP addresses in a subnet are used, so if a certain interface on this router has IP address 10.0.5.1, and the network mask is 255.255.255.0, I would strongly suspect that the other router has IP address 10.0.5.2 (10.0.5.0 can't be used for this subnet).For serial (point-to-point) connections, to save address space, quite often a subnet /30 is used (that is, a subnet mask of 255.255.255.252), in which case the other router has the only other usable IP address in the subnet. For example, if this router has IP address 10.0.8.26 and a subnet mask 255.255.255.252, the subnet has addresses in the range 10.0.8.24 - 10.0.8.27, but since the first and last addresses can't be used, the only option for a router or other machine on the other end is 10.0.8.25.It must be an IP address in the same subnet. Other than that, the network designer has the flexibility to assign any IP address in the same subnet. Quite often, the first or last IP addresses in a subnet are used, so if a certain interface on this router has IP address 10.0.5.1, and the network mask is 255.255.255.0, I would strongly suspect that the other router has IP address 10.0.5.2 (10.0.5.0 can't be used for this subnet).For serial (point-to-point) connections, to save address space, quite often a subnet /30 is used (that is, a subnet mask of 255.255.255.252), in which case the other router has the only other usable IP address in the subnet. For example, if this router has IP address 10.0.8.26 and a subnet mask 255.255.255.252, the subnet has addresses in the range 10.0.8.24 - 10.0.8.27, but since the first and last addresses can't be used, the only option for a router or other machine on the other end is 10.0.8.25.It must be an IP address in the same subnet. Other than that, the network designer has the flexibility to assign any IP address in the same subnet. Quite often, the first or last IP addresses in a subnet are used, so if a certain interface on this router has IP address 10.0.5.1, and the network mask is 255.255.255.0, I would strongly suspect that the other router has IP address 10.0.5.2 (10.0.5.0 can't be used for this subnet).For serial (point-to-point) connections, to save address space, quite often a subnet /30 is used (that is, a subnet mask of 255.255.255.252), in which case the other router has the only other usable IP address in the subnet. For example, if this router has IP address 10.0.8.26 and a subnet mask 255.255.255.252, the subnet has addresses in the range 10.0.8.24 - 10.0.8.27, but since the first and last addresses can't be used, the only option for a router or other machine on the other end is 10.0.8.25.
Not enough information. You also need the subnet mask. For example, if the subnet mask 255.255.255.0 is used (this is quite common), the subnet range is from 0-255 (in the last byte - keep the other bytes as they are), but the first and last of these addresses are reserved for special purposes, and can't be assigned for hosts. Therefore, the host range has addresses 1-254 in the last byte.
Since a subnet mask is used to separate the network id from the host id, any 1 bits indicate the network portion and the 0 bits indicate host portion. As an example, in the subnet mask: 255.255.0.0 This indicates the first two octets are used for the network, and the last two octets (ipV4) are used for host portion of an address.
A Subnet calculator is used for determining the attributes of an IP subnet including the start of it. Results of the subnet calculation include the access control lists, the subnet range and the subnet bitmap.
No, all subnets must use the same subnet mask
A subnet mask typically appears in the same format as an IP address, consisting of four octets separated by periods (e.g., 255.255.255.0). It identifies the network and host portions of an IP address, with the network part represented by consecutive ones (1s) in binary and the host part by zeros (0s). For example, in the subnet mask 255.255.255.0, the first three octets (255) indicate the network portion, while the last octet (0) indicates the host portion. Subnet masks can also be represented in CIDR notation, such as /24, which signifies that the first 24 bits are used for the network.
By using 255.255.240.0 as a subnet mask you have 4+8 bits remaining, that can be used for host IP addresses. So you have 2^12 IPs - 2 IPs = 4094. This "minus 2" IPs are because first IP is always the IP of entire network and last one is a brodcast address. None of them can be assigned to a particular host.
It depends on whether you are subnetting or not. If not, the default subnet mask would be 255.255.255.0
The subnet mask for a /26 subnet indicates that the first 26 bits are used for the network portion, leaving 6 bits for the host portion. In this case, the subnet 172.168.2.0/26 can accommodate 2^6 = 64 addresses, but only 62 are usable for hosts (subtracting the network and broadcast addresses). Thus, there are 26 bits designated for the network and 6 bits for hosts within this subnet.