The can be connected in parallel, in series, or in some combination. Household appliances are connected in parallel, because that way:
1. Each appliance receives the full voltage. Results are thus more predictable. For example, a light bulb will give the same light, no matter whether it is the only light bulb, or whether others are also connected.
2. Each appliance will continue working even if the others are switched off.
When resistors are connected in parallel to the same voltage source, the overall resistance in the circuit decreases. This is because the current has multiple paths to flow through, reducing the total resistance that the current encounters.
a voltage source has very less(negligible)resistance.thus is considered as a short.if connected in parallel to a resistor will draw all the current acting as a short.thus is always connected in series of a resistor.where as a current source has tremendous resistance(infinity).thus if connected in series will be conidered as an open branch and no current will flow through it other than the source current.
If three equal resistors are connected in parallel, the equivalent resistance will be one-third of the resistance in series. This lower resistance will result in a higher current flowing through the resistors when connected in parallel compared to when they are in series. Therefore, the power dissipated by the resistors in parallel will be greater than 10W.
Current will always flow in both resistors, but the one with the lower resistance will have more current flow through it. The value of the current in each resistor is calculated by dividing the voltage of the source by the resistance of the individual resistor. As long as the capability of the power source isn't exceeded, the current through each resistor isn't affected by the presence of the other resistor. Said another way, if two resistors are connected in parallel across a source, neither one "cares" that the other resistor is connected across the source. The two resistors work independently.
A Discussion has been started about this question. Click on the View Discussion button below to take part in it.The "type" of a source does not limit in what ways resistors can be connected to it. Resistors can be connected either in series or in parallel - or in a combination of series and parallel - across a voltage source.Similarly, resistors can be connected either in series or in parallel - or in a combination of series and parallel - across a current source.
A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source.
The effective resistance of those three resistors in parallel is 20 ohms. And it makes no difference what the power source is, or whether they're even connected to a power source at all. As soon as those three resistors are in parallel, their effective resistance is 20 ohms immediately, even if they're still in the drawer.
A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source.
Current sources should not be connected in series. It's okay to connect them in parallel.
In this case, to get the equivalent resistance, first you use the parallel formula (1/R = 1/R1 + 1/R2) to calculate the equivalent resistors in parallel. Then you calculate the series resistance of this combination, with the other resistor.
In parallel circuit the current through the resistors are different in values depending upon the values of resistors. But the sum of the currents across all the resistors will be equal to the current through the sourcgsvg bdjasuhafyuhda
yes ,they can be connected ,then they both will drive the current through that resistance ,the current through that resistance will be the sum of currents due to each individual source taking only one at a time (use superpositon theorem)