because current is the ratio of voltage and resistance.
In the graph of voltage vs current, the relationship between voltage and current is linear. This means that as voltage increases, current also increases proportionally.
The current vs voltage graph shows that there is a linear relationship between current and voltage in the given circuit. This means that as voltage increases, the current also increases proportionally.
In a pure inductive circuit, the relationship between current and voltage is such that the current lags behind the voltage by a phase angle of 90 degrees. This means that the current and voltage are out of phase with each other, with the current reaching its peak value after the voltage has reached its peak value.
Ohm's law gives the relationship between current, voltage, and resistance. The law states that I=V/R, where I is current, V is voltage, and R is resistance. Source: university digital fundamentals
The relationship between power, voltage, and current can be expressed mathematically using the formula: Power Voltage x Current. This formula shows that power is directly proportional to both voltage and current. In other words, an increase in either voltage or current will result in an increase in power.
According to ohms law I=V/R; So current is directly proportional to voltage
In an electrical circuit, power is the product of current (the flow of electric charge) and voltage (the force that drives the current). The relationship between power, current, and voltage is described by the equation P I x V, where P is power, I is current, and V is voltage. This equation shows that power increases when either current or voltage increases in a circuit.
Ohm's Law: voltage = current * resistance. If resistance is a constant, then voltage is directly proportional to current.
In an electrical circuit, current is the flow of electric charge, voltage is the force that drives the current, and resistance is the opposition to the flow of current. According to Ohm's Law, the relationship between current (I), voltage (V), and resistance (R) is given by the equation V I R, where voltage equals current multiplied by resistance.
Ohm's Law states that the relationship between resistance, current, and voltage is given by the equation V IR, where V is the voltage, I is the current, and R is the resistance. This means that for a given voltage, the current flowing through a circuit is inversely proportional to the resistance - as resistance increases, current decreases, and vice versa.
In a circuit with constant voltage, the relationship between current and resistance is inversely proportional. This means that as resistance increases, the current flowing through the circuit decreases, and vice versa.
In a purely capacitive circuit, the current and the components have a relationship where the current leads the voltage by 90 degrees. This means that the current and voltage are out of phase in a purely capacitive circuit.