answersLogoWhite

0


Best Answer

An electron configuration refers to the distribution of electrons in orbitals. Since there are no ions given for this question, an electron configuration cannot be provided.

User Avatar

Wiki User

9y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

1w ago

Sure!

  1. Sodium ion (Na+): 1s^2 2s^2 2p^6
  2. Oxygen ion (O2-): 1s^2 2s^2 2p^6
  3. Calcium ion (Ca2+): 1s^2 2s^2 2p^6 3s^2 3p^6
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Write electron configurations for each of the following ions?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemistry

What can be said about the electron configurations of all the elements in a group?

Elements in a group have the same number of valence electrons, giving them similar electron configurations. The electron configurations differ by the number of filled inner shells, leading to a trend in chemical reactivity within the group. The periodic table is organized based on these similarities in electron configurations within groups.


Identify the group of elements that corresponds to each of the following generalized electron configurations noble gasns2np5?

The elements with the electron configuration of noble gas ns2np5 correspond to the halogen group on the periodic table. This includes elements such as fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). They have seven valence electrons and are highly reactive nonmetals.


What are periods on the periodic table of elements?

Periods on the periodic table are rows that categorize elements based on the number of electron shells they have. There are seven periods in total, each representing a different energy level. Elements in the same period have similar properties due to their electron configurations.


How is the electron arrangement of an atom indicated by electron configurations and orbitals diagrams?

Electron configurations show the energy levels, the orbitals and the number of electrons in each case. For example, the electron configuration of Na (at.no. 11) is 1s2 2s2 2p6 3s1. This shows that in energy level 1, there are 2 electrons in the s orbital. In the 2nd energy level, there are 2 electrons in the s orbital and 6 electrons in the p orbitals. etc. The orbital diagram would show essentially the same thing, but would include the spin of each electron, by showing up and down arrows. Cannot draw it here but if ^ represents up arrow and v represents down arrow, it would look something like ^v ^v ^v^v^v ^ 1s 2s 2p 3s


How do you make an electron dot diagram for germanium?

To make an electron dot diagram for germanium, start by writing the chemical symbol for germanium (Ge). Germanium has four valence electrons, so place one dot on each side of the symbol, representing each electron. Ensure that no more than two dots are on each side, following the octet rule.

Related questions

Identify the group of elements that corresponds to each of the following generalized electron configurations noble gasns2np5?

The elements with the electron configuration of noble gas ns2np5 correspond to the halogen group on the periodic table. This includes elements such as fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and astatine (At). They have seven valence electrons and are highly reactive nonmetals.


What have stable electron configurations?

any time there are as many electrons and protons and they fill each orbital optimally.


Is true about the electron configurations of the representative elements?

Each neutral atom has a specific electron cofiguration.


How electron configurations can be used to describe the many colors produced by fireworks?

Each element has a specific electron configuration, causing each to have a distinctive color when exposed to fire


How do the valence electron configurations of the alkali metals compare with others?

The valance electron configuration is the same in each at ns1 where n = the period number.


What can be said about the electron configurations of all the elements in a group?

Elements in a group have the same number of valence electrons, giving them similar electron configurations. The electron configurations differ by the number of filled inner shells, leading to a trend in chemical reactivity within the group. The periodic table is organized based on these similarities in electron configurations within groups.


How do the valence electrons configurations of the alkali metals compare with each other?

The valance electron configuration is the same in each at ns1 where n = the period number.


Why do groups among the main-group element display similar chemical behavior?

The electron configurations of the elements in each main group are regular and consistent:the elements in each group have the same number of valence electrons.


How do you find the number of orbitals in an element?

You would have to determine the electron configuration for atoms of a given element. Each s sublevel contains 1 orbital, each p sublevel contains 3 orbitals, each d sublevel contain 5 orbitals, and each f sublevel contains 7 orbitals. Click on the related link to see a periodic table that shows electron configurations for the elements.


What is the valence electron configuration of each element in group 1?

All elements in group 1 have 1 valence electron.


How do electron configurations become stable?

There are many types of rules for electron configuration. Look at the Aufbau principle and Hund's rules.In each orbital there is a maximum of two electrons.In a "s" orbital, there are two electrons.In a "p" orbital, there are three sub-orbitals, each containing two electrons. (Thus containing 6 electrons)In a "d" orbital, there are five sub-orbitals, each containing two electrons. (Thus containing 10 electrons)In a "f" orbital, there are seven sub-orbitals, each containing two electrons. (Thus containing 14 electrons)Look at the Aufbau diagram linked below.The coefficient represents the orbital. Do not use mathematics to try to solve the configurations.1s2 2s2 2p6 : Neon's Electron ConfigurationThe letter following the coefficient describes which type of orbital it is, being s, p, d, or f.The superscript denotes the number of electrons it contains. If you add 2, 2, and 6, you would get 10, Neon's atomic number.Electron configurations become stable when they are neutrally charged.i.e Li: 1s2 2s1This is a stable electron configuration. However, if you lose that one electron,Li: 1s2It become a positively charged ion, called a cation.


Do two electrons following parallel tracks attract each other?

Each electron has a single negative charge. Objects with like charges repel each other. Therefore two electrons following parallel tracks will repel, not attract, each other.