it is normally intermediate flow because of the silica content.
The lower the viscosity is the hotter the magma is and faster it flows.Higher the viscosity is the cooler it is and slower it flows down.
Low viscosity mafic magma.
The higher the silica content of the magma, the more explosive the eruption. Magma enriched in silica has a higher viscosity (resistance to flow). Pressures are more likely to build up behind the thicker, high silica content magma and result in potentially more explosive eruptions.
Silica content is directly proportional to viscosity, so the higher the silica content of a lava, the higher its viscosity. high viscosity means a lava will be thick and slow moving, hence probably meaning an explosive eruption. lava's with a high viscosity include rhyolite and andesite whereas lava's with a low viscosity (runny ones) include basalt.
This is because silica-rich magma is thicker. The thicker the magma, the chance for the dissolved gas in there to escape is less likely. This causes an explosion. When the gases do escape, they cause an even bigger explosion
Yes. Viscosity is the resistance of a fluid to flowing. A high viscosity means low flowing (I specifically mention this because this is a huge pitfall) When silica content increases, and when temperature decreases, the viscosity of a magma increases along with it.
low silica content (basaltic magma)
low silica content (basaltic magma)
The three elements that determine viscosity in magma are:TemperatureSilicaOxides (gases)Viscosity changes the way in which magma will flow. Magma with low viscosity will flow much more easily than high viscosity magma.
A magma's viscosity is directly related to its temperature and silica content. Higher temperature and lower silica content typically result in lower viscosity, making the magma more fluid and runny. Conversely, lower temperature and higher silica content lead to higher viscosity, resulting in a thicker, more sticky magma.
Silica content determines viscosity. The higher the silica content the more viscous (slower moving). Ultramafic <45% silica Least viscous Mafic 45-52% Silica Intermediate 53-65% Silica Felsic >65% Silica Highly viscous
A magma's viscosity is directly related to its degree of silica content.
silica content
True. High-silica magma, such as that found in rhyolitic compositions, has a high viscosity due to the increased bonding between silica molecules. This results in a thicker, more resistant flow compared to low-silica magma, which is more fluid and has lower viscosity.
magma that has more silica is more viscous
The amount of silica and water affect the viscosity of the magma. The more viscous the magma, the slower the flow rate and the shorter and the thicker the flows. Silica makes for a more viscous magma.
temperature, silica content, and the amount of dissolved gases determine the viscosity of magma. For instance, if the magma is cold, has a high amount of silica and has lots of dissolved gases in it the viscosity will be very high.