answersLogoWhite

0

By finding the arrival time of the P waves and S waves :)

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Art & Architecture

Why does it take at least three circles to find the epicenter?

To accurately locate an earthquake's epicenter, data from at least three seismic stations is required because each station provides a different distance to the epicenter based on the time it takes for seismic waves to arrive. By drawing circles around each station with radii equal to these distances, the point where all three circles intersect indicates the epicenter's location. If only two circles are used, they would intersect at two points, making it impossible to determine the exact epicenter. Therefore, three circles ensure a single, definitive point of intersection.


What do geologists use to locate a earthquakes epicenter?

The S-P time method is perhaps the simplest method seismologists use to find an earthquake's epicenter. +++ No it's not. That finds its Focus. The Epicentre is the point of maximum movement on the land surface above the slip itself.


How many seismic stations are needed to find an earthquake's magnitude?

3, or that's what i remember from science class.


How do people sense seismic waves?

They use the Richter scale to measure the speed of the earthquakes. Levels of earthquakes 2.0 ---> can't be felt 4.0 ---> do not cause damage 5.0---> can cause damage 6.0 ---> considered strong 7.0---> is a major earthquake +++ That is not correct. You have confused speed with intensity. The Richter scale, which is logarithmic, measures the intensity ("strength" if you like). The speed is measured in ordinary linear units like metre/second or km/hr, calculated from observing the earthquake's waves' progress past seismographs around the world.


How could you find the location of the epicenter?

how do seismologist know how to find the location of a epicenter

Related Questions

Scientists use -------waves to find an earthquake epicenter?

Scientists use seismic waves to find an earthquake epicenter. By analyzing the arrival times of primary (P) and secondary (S) seismic waves at different seismic stations, scientists can triangulate the epicenter of the earthquake.


What waves do scientists use to find an earthquake's epicenter?

seismic waves


How do you use triangulation to find an epicenter of an earthquake?

To find the epicenter of an earthquake using triangulation, seismologists analyze the arrival times of seismic waves at three or more seismic stations. By comparing the differences in arrival times, they can determine the distances from each station to the epicenter. By drawing circles with the stations as the center and their respective distances as the radius, the intersection of these circles represents the estimated epicenter of the earthquake.


How do geologist locate the epicenter of an earthquake?

This job would normally be undertaken by a type of geophysicist known as a seismologist rather than a geologist. For information on how seismologists locate seismic waves, see the related question.


A travel-time graph can be used to find the .?

The distance of an earthquake epicenter from a seismic station. Using the Three point method, the distance from 3 seismic stations are used to locate the epicenter by triangulation.


A travel-time graph can be used to find the?

The distance of an earthquake epicenter from a seismic station. Using the Three point method, the distance from 3 seismic stations are used to locate the epicenter by triangulation.


What is the process that is used to find an earthquake's epicenter?

Triangulation. First, they calculate the time between the first and second - primary and secondary - seismic waves created in an earthquake and use this information to determine how far the seismometer is from the epicenter of the earthquake. A circle is drawn around the seismometer so that it is in the center and the radius is equal to the calculated distance. Using this information from three different seismometers, two more circles are drawn and the intersecting point of the three circles is where the epicenter of the earthquake is located.


How are p waves and s waves used to find the distance from a seismic station to the epicenter of an earthquake?

By measuring the time difference between the arrival of P-waves and S-waves at a seismic station, seismologists can calculate the distance from the station to the earthquake's epicenter. P-waves travel faster than S-waves, so the greater the time lag between their arrivals, the farther the station is from the epicenter. By using data from multiple stations, seismologists can triangulate the location of the epicenter.


What is the number of seismic stations need to find the epicenter of an earthquake?

Technically you just need one, but the more there are, the easier it is to locate the epicenter of the earthquake. The reason for this is that based on the timing of each of the three seismic waves that reach the station, the station can calculate a radius all around the station. So picture a circle with what the radius is around the station, another station will do the same thing, and there HAS TO BE an intersection of these circles somewhere, so that narrows down the location of the epicenter. Hope this makes sense.


How many seismograph data points are required to locate an earthquake's epicenter?

At least 3 stations are required to find the epicenter


How many seismic do you need to find an earthquakes epicenter?

3. With 2 you can get possible locations (where the 2 circles intersect). With the 3rd reading, that circle will intersect the other two circles at one of those 2 candidate locations. See the link for a description.http://www.geo.mtu.edu/UPSeis/locating.html


How does triangulation determine the epicenter?

To locate the epicenter you use the speed of waves that travel from the epicenter to the seismic sensor locations. With two sensors you are able to narrow the location to two places (when on a surface using intersecting hyperbolas). With a third sensor you have the location on a surface and below ground. This third sensor is why they call it tri - angulation but the angles are hard to find without HS trigonometry and other mathematics.