answersLogoWhite

0


Best Answer

== == Circular and Satellite Motion: Chapter Outline About the Tutorial Tutorial Topics Usage Policy Feedback Speed and Velocity Acceleration The Centripetal Force Requirement The Forbidden F-Word Mathematics of Circular Motion == Newton's Second law - Revisited Amusement Park Physics Athletics

==== ==== Gravity is More Than a Name The Apple, the Moon, and the Inverse Square Law Newton's Law of Universal Gravitation Cavendish and the Value of G The Value of g

==== ==== Kepler's Three Laws Circular Motion Principles for Satellites Mathematics of Satellite Motion Weightlessness in Orbit Energy Relationships for Satellites

In the early 1600s, Johannes Kepler proposed three laws of planetary motion. Kepler was able to summarize the carefully collected data of his mentor - Tycho Brahe - with three statements which described the motion of planets in a sun-centered solar system. Kepler's efforts to explain the underlying reasons for such motions are no longer accepted; nonetheless, the actual laws themselves are still considered an accurate description of the motion of any planet and any satellite. Kepler's three laws of planetary motion can be described as follows: * The path of the planets about the sun are elliptical in shape, with the center of the sun being located at one focus. (The Law of Ellipses) * An imaginary line drawn from the center of the sun to the center of the planet will sweep out equal areas in equal intervals of time. (The Law of Equal Areas) * The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun. (The Law of Harmonies) Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together which these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path which resembles an ellipse, with the sun being located at one of the foci of that ellipse. Kepler's second law - sometimes referred to as the law of equal areas - describes the speed at which any given planet will move while orbiting the sun. The speed at which any planet moves through space is constantly changing. A planet moves fastest when it is closest to the sun and slowest when it is furthest from the sun. Yet, if an imaginary line were drawn from the center of the planet to the center of the sun, that line would sweep out the same area in equal periods of time. For instance, if an imaginary line were drawn from the earth to the sun, then the area swept out by the line in every 31-day month would be the same. This is depicted in the diagram below. As can be observed in the diagram, the areas formed when the earth is closest to the sun can be approximated as a wide but short triangle; whereas the areas formed when the earth is farthest from the sun can be approximated as a narrow but long triangle. These areas are the same size. Since the base of these triangles are longer when the earth is furthest from the sun, the earth would have to be moving more slowly in order for this imaginary area to be the same size as when the earth is closest to the sun. Kepler's third law - sometimes referred to as the law of harmonies - compares the orbital period and radius of orbit of a planet to those of other planets. Unlike Kepler's first and second laws which describe the motion characteristics of a single planet, the third law makes a comparison between the motion characteristics of different planets. The comparison being made is that the ratio of the squares of the periods to the cubes of their average distances from the sun is the same for every one of the planets. As an illustration, consider the orbital period and average distance from sun (orbital radius) for Earth and mars as given in the table below. Dist. (m) Earth 3.156 x 107 s 1.4957 x 1011 2.977 x 10-19 Mars 5.93 x 107 s 2.278 x 1011 2.975 x 10-19 Observe that the T2/R3 ratio is the same for Earth as it is for mars. In fact, if the same T2/R3 ratio is computed for the other planets, it can be found that this ratio is nearly the same value for all the planets (see table below). Amazingly, every planet has the same T2/R3 ratio. Mercury 0.241 0.39 0.98 Venus .615 0.72 1.01 Earth 1.00 1.00 1.00 Mars 1.88 1.52 1.01 Jupiter 11.8 5.20 0.99 Saturn 29.5 9.54 1.00 Uranus 84.0 19.18 1.00 Neptune 165 30.06 1.00 Pluto 248 39.44 1.00 (NOTE: The average distance value is given in astronomical units where 1 a.u. is equal to the distance from the earth to the sun - 1.4957 x 1011 m. The orbital period is given in units of earth-years where 1 earth year is the time required for the earth to orbit the sun - 3.156 x 107 seconds. ) Kepler's third law provides an accurate description of the period and distance for a planet's orbits about the sun. Additionally, the same law which describes the T2/R3 ratio for the planets' orbits about the sun also accurately describes the T2/R3 ratio for any satellite (whether a moon or a man-made satellite) about any planet. There is something much deeper to be found in this T2/R3 ratio - something which must relate to basic fundamental principles of motion. In the next part of Lesson 4, these principles will be investigated as we draw a connection between the circular motion principles discussed in Lesson 1 and the motion of a satellite. The ancients used to believe everything, the planets etc. revolved around the earth. In people, this belief is called egocentrism. Teenagers and Senior citizens also exhibit this attitude at times. I found your answer on the internet, I just put Kepler's Law in the browser.

User Avatar

Wiki User

16y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

12y ago

Well when the earth rotates one area become farther away from the sun which causes night and when an area becomes closer to the sun it causes daytime

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How does earth's rotation determine whether it is day or night?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How does earth's rotation determine whether is day or night?

Soup


How does the earths rotation affect the way you view the moon?

The earths rotation effects whether it is night or day (so you'll see the moon at night).


What are three proofs of earths rotation?

the presence of day and night proved its rotation


What cause day or night on the earth?

the earths rotation


What is earths spinning that causes night and day?

rotation


What causes earths spinning that causes night and day?

rotation


Why do the stars appear to move around the night sky?

the earths rotation


What is an everyday phenomena of earths rotation?

Just a guess but maybe day and night


The earths rotation is a direct cause of?

The repeating phenomena referred to as "day" and "night".


What is earths rotation on its axis and the sun shining on the earth creates?

day and night


What is the effect of rotation of earth?

The earths rotation causes day and night, wind, tides and ocean currents and its also responsible for the different seasons.


Earths rotation is described as?

The earth's rotation is described as a counter-clockwise movement which passes through the north and south poles. This is what will result to day and night.