answersLogoWhite

0

The difference in arrival times of P and S waves.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Art & Architecture

What is a seismic travel time curve?

A seismic travel time curve describes the relation between the travel time of a seismic wave and the epicentral distance. It is used to calculate the calculate the distance of the earthquake's epicenter from the seismograph.


What is the difference between epicenter and hypo center?

The epicenter is the origin of an earthquake. However, a hypocenter is the exact spot where a bomb has been dropped.


How does distance from the epicenter affect the s-p waves time interval?

The distance from the epicenter affects the S-P wave time interval because seismic waves travel at different speeds. P-waves (primary waves) are faster than S-waves (secondary waves), so as the distance from the epicenter increases, the time gap between the arrival of the P-wave and S-wave (the S-P time interval) also increases. This time interval is used to calculate the distance to the earthquake's epicenter, allowing seismologists to locate it accurately. Thus, a greater distance results in a longer S-P time interval.


The location on earth's surface directly above the focus of an earthquake is the epicenter a close correlation exists between epicenters and plate boundaries is it true or false?

Yes, it is true that the location of the earth's surface is directly above the focus of an earthquake is the epicenter a close correlation exists between epicenters and the plate boundaries.


If a p wave arrives at a seismograph station at 907 am and the S waves arrives at the same seismograph stations at 909 an about how fare is that station from the epicenter of the earthquake?

To estimate the distance from the seismograph station to the earthquake epicenter, we can use the typical speed of P waves (approximately 6 km/s) and S waves (approximately 3.5 km/s). The time difference between the P wave and S wave arrival is 2 minutes (or 120 seconds). Given that P waves travel faster, we can calculate the distance using the time difference, which would be approximately 360 km from the epicenter to the station.

Related Questions

How is the distance between the seismic station and the earthquake epicenter determined?

The distance between a seismic station and the earthquake epicenter is determined from the S-P interval, which is the time difference between the time of arrival of the first P wave and the first S wave.


How is the distance between a seismic station and the earthquake epicenter is determined?

The distance between a seismic station and the earthquake epicenter is determined from the S-P interval, which is the time difference between the time of arrival of the first P wave and the first S wave.


What is the relationship between lag time and distance from an earthquake's epicenter?

The lag time between the arrival of primary (P-wave) and secondary (S-wave) seismic waves increases with distance from an earthquake's epicenter. This relationship is due to the differing speeds at which these waves travel through the Earth's layers. By measuring this lag time, scientists can estimate the distance to the earthquake's epicenter.


Which two waves from an earthquake can triangulate the epicenter?

P-waves (Primary) and S-waves (Secondary). Using the difference in time between the arrival of P- and S-waves, you can then determine the distance from the epicenter. Once you've determined the distance from the epicenter of three different stations, you'll be able to triangulate the epicenter (the point where all three circles cross).


If there are 3 records of the same earthquake how can the epicenter be determined?

The epicenter can be determined by measuring the time difference between the arrival of P and S waves, and then calculating the distance of the epicenter from each of the 3 stations. Once you have estimated the distance for each station you then draw a circle around each one. The place where the circles meet or intersect, is the epicenter.


How is an epicentral distance determined?

The epicentral distance is determined by measuring the time difference between the arrival of P-waves and S-waves at a seismic station. By analyzing this time delay, seismologists can calculate the epicentral distance from the earthquake source to the station. The farther away the station is from the epicenter, the longer the delay between the arrivals of the P-waves and S-waves.


How do you calculate the distance from an earthquake?

The distance from an earthquake epicenter can be calculated using the time difference between the arrival of P-waves and S-waves at a seismograph station. By measuring this time lag and using the known velocity of seismic waves through the Earth's interior, the distance can be estimated. The greater the time lag between the arrival of the P-wave and S-wave, the farther the seismograph station is from the earthquake epicenter.


What is the difference between epicenter - earthquake?

An earthquake can reach several miles in distance, but the epicenter is the point of the strongest movement, usually the starting point from which it spreads. Also, the epicentre is on the ground directly above the focus. The focus is the point where the actual earthquake occurred. Hope this helped:)


How do you figure out the distance of an epicenter?

The distance of an epicenter from a seismograph station can determined by the time it takes for the seismic waves to reach each station. You need at least 3 seismic stations to record the event to determine this. The time taken for each seismic station to resisted the event will be different as they are different distances from the epicenter. The distance to the epicenter can then be calculated for each station and a epicenter can be determined by a triangulation from all stations that have registered the event.


How do scientists locate the epicenter of an earthquake by s-p time method?

They first collect several seismogram tracings of the same earthquake from different locations. Then the seismograms are placed on a time distance graph. The seismogram tracing of the first p wave is lined up with the p wave time distance curve. The difference from each station from the earth quake can be found by reading the horizontal axis. After finding out the distance, a seismologist can locate an earthquake's epicenter.


How are p waves and s waves used to find the distance from a seismic station to the epicenter of an earthquake?

By measuring the time difference between the arrival of P-waves and S-waves at a seismic station, seismologists can calculate the distance from the station to the earthquake's epicenter. P-waves travel faster than S-waves, so the greater the time lag between their arrivals, the farther the station is from the epicenter. By using data from multiple stations, seismologists can triangulate the location of the epicenter.


What is the process that is used to find an earthquake's epicenter?

Triangulation. First, they calculate the time between the first and second - primary and secondary - seismic waves created in an earthquake and use this information to determine how far the seismometer is from the epicenter of the earthquake. A circle is drawn around the seismometer so that it is in the center and the radius is equal to the calculated distance. Using this information from three different seismometers, two more circles are drawn and the intersecting point of the three circles is where the epicenter of the earthquake is located.