Actually in mass spectrometer the isotopes of an element are separated by applying magnetic field.Each isotope is then compared with carbon-12 to get the Atomic Mass of that isotope.
A mass spectrometer is a device used to determine atomic masses by separating and measuring the mass-to-charge ratio of ions. By analyzing the deflection of ions in a magnetic or electric field, the mass spectrometer can provide accurate measurements of atomic masses.
A mass spectrometer measures atomic mass by removing one or more electrons from an atom. The spectrometer then sends the atom through a magnetic field. Because of the missing electrons, the atom has more protons than electrons, resulting in a positive charge. The magnetic field bends the path of the positively charged atom as it moves through the field. The amount of bending depends on the atom's mass. The atomic mass of the atom can be calculated from the magnitude of the bend.
Using mass spectrometer, one can identify and/or separate the isotopes of the elements and also predict its composition in a given mixture.
A mass spectrometer works by ionizing a sample, separating the ions based on their mass-to-charge ratio, and detecting and measuring the abundance of each ion to determine the composition of the sample.
A mass spectrometer works by ionizing a sample, separating the ions based on their mass-to-charge ratio, and detecting the abundance of each ion to determine the composition of the sample.
A mass spectrometer works by ionizing a sample, separating the ions based on their mass-to-charge ratio, and detecting the abundance of each ion to determine the composition of the sample.
Mass of an atom is determined by the no. of protons+ no. of neutrons in the atom.
Proton + Nuetron = Atomic Mass
Aston's mass spectrograph is a magnetic sector mass spectrometer that separates ions based on their mass-to-charge ratio using magnetic and electric fields. Dempster's mass spectrometer is an early design of a mass spectrometer that used electric and magnetic fields to separate ions based on their mass-to-charge ratio. Aston's design was an improvement over Dempster's, offering higher resolution and precision in analyzing isotopic composition.
Indium can be ionized in a mass spectrometer using an ionization source such as electrospray ionization (ESI) or inductively coupled plasma (ICP) ionization. These sources generate ions from the indium sample, which are then analyzed in the mass spectrometer for determination of elemental composition or isotopic ratios.
Mass spectrometer would work.
mass number= no. of protons + no. of neutron