The answer to this question is Hertzsprung-Russell diagram
The Hertzsprung-Russell (HR) diagram is a graph that shows the relationship between a star's magnitude (luminosity) and temperature. It plots stars based on their color (temperature) and brightness (magnitude), allowing astronomers to classify stars and understand their evolutionary stage.
between the yellow stage color on the digram
Luminosity refers to the total amount of energy a star emits per unit time, while absolute magnitude is a measure of a star's intrinsic brightness as seen from a standard distance of 10 parsecs. The absolute magnitude is directly related to luminosity; a lower absolute magnitude indicates a higher luminosity. The relationship between the two can be quantified using the distance modulus formula, which allows astronomers to compare the brightness of celestial objects regardless of their distance from Earth.
The absolute magnitude of a celestial object is a measure of its brightness as seen from a standard distance, while luminosity is the total amount of energy a celestial object emits per unit time. The relationship between absolute magnitude and luminosity is that a higher absolute magnitude corresponds to a lower luminosity, and vice versa. In other words, the absolute magnitude and luminosity of a celestial object are inversely related.
The relationship between luminosity and absolute magnitude in stars is that luminosity measures the total amount of energy a star emits, while absolute magnitude measures the brightness of a star as seen from a standard distance. Stars with higher luminosity have lower absolute magnitudes, meaning they appear brighter in the sky.
The graph that shows the relationship between a star's absolute magnitude and temperature is called the Hertzsprung-Russell (H-R) diagram. In this diagram, stars are plotted according to their absolute magnitude (or luminosity) on the vertical axis and their surface temperature on the horizontal axis. Typically, the temperature decreases from left to right, and the diagram reveals distinct regions for different types of stars, including main sequence stars, giants, and white dwarfs. This allows astronomers to classify stars and understand their evolutionary stages.
You need to do this. It is homework and we don't have the graph . You teacher is looking for your critical thinking skills and not ours.
That is called the Hertzsprung-Russell or HR diagram and each star occupies a point. The horizontal axis is temperature and the vertical axis is the absolute magnitude.
The HR diagram, also known as the Hertzsprung-Russell diagram, depicts the relationship between the luminosity and temperature of stars. It shows how stars are distributed in terms of their brightness and temperature, allowing astronomers to classify stars based on these characteristics.
A graph that shows the relationship between a star's magnitude and temperature is called a Hertzsprung-Russell diagram. This scatter plot typically displays stellar temperature on the horizontal axis (increasing from right to left) and absolute magnitude or luminosity on the vertical axis. It reveals distinct regions where different types of stars are located, such as the main sequence, giants, and supergiants, indicating how temperature and brightness correlate in stellar evolution.
The Hertzsprung-Russell (HR) diagram is a graph that shows the relationship between a star's magnitude (luminosity) and temperature. It plots stars based on their color (temperature) and brightness (magnitude), allowing astronomers to classify stars and understand their evolutionary stage.
The relationship between absolute temperature and volume of an ideal gas at constant pressure.
As temperature increases the absolute brightness increases
The Hertzsprung-Russell diagram predicts the relationship between a star's luminosity (brightness) and temperature, allowing astronomers to classify stars based on their properties. It shows the correlation between a star's temperature and its absolute magnitude, helping to understand their evolutionary stage and lifecycle.
between the yellow stage color on the digram
The brightness of a star depends on its temperature, size and distance from the earth. The measure of a star's brightness is called its magnitude. Bright stars are first magnitude stars. Second magnitude stars are dimmer. The larger the magnitude number, the dimmer is the star.The magnitude of stars may be apparent or absolute.
According to Charles's Law, there is a direct relationship between the volume and absolute temperature of an ideal gas, assuming pressure remains constant. This law states that as temperature increases, the volume of the gas also increases proportionally, and vice versa.