The rays of light going through the dead centre are not deviated. So the angle from the top of image to lens centre is the same as for top of object to lens centre. So height is proportional to distance. So 13/51 = 3.5/dist giving distance=3.5x51/13 = about 13.73mm
Since the image height is smaller than the object height, it is a virtual image. Using the thin lens equation (1/f = 1/d_o + 1/d_i), where d_o is the object distance and d_i is the image distance, and assuming a diverging lens, the image distance is found to be -17.17 mm. This means the image is located 17.17 mm in front of the lens.
The formula used to calculate the image distance for a diverging lens is 1/f = 1/d_o + 1/d_i, where f is the focal length of the lens, d_o is the object distance, and d_i is the image distance. Given the object distance of 51 mm, the object height of 13 mm, and the image height of 3.5 mm, the image distance from the lens can be calculated using the equation and appropriate algebraic rearrangements.
The relation between the distance and height of an object and the image goes like this:L1/H1=L2/H2where L1 and H1 is the Length of the object from the lens and H1 is the height of the object respectively. Same goes for L2, H2 except these are for the image of the same object.If you put values in the above formula, the distance of the image from the lens comes out to be 13.73mm
The image will be located the same distance behind the mirror as the object is in front of it, so the image will be 15 millimeters behind the mirror.
when dealing with a flat mirror object-distance and image-distance should be equal.
7
Since the image height is smaller than the object height, it is a virtual image. Using the thin lens equation (1/f = 1/d_o + 1/d_i), where d_o is the object distance and d_i is the image distance, and assuming a diverging lens, the image distance is found to be -17.17 mm. This means the image is located 17.17 mm in front of the lens.
Using the expression v/u = Image size / object size we can find the value of v. v = 15 * 3.5/13 = 4 (nearly) So approximately at a distance of 4 mm in front of the lens the image is located on the same side of the object.
hi/ho = di/do di = dohi/ho di = (51mm)(3.5mm)/(13mm) di = 14mm * rounded to 2 significant figures The image would be 14mm in front of the lens.
6mm
13.7 millimetersThis answer is correct, but the formula is most important.The formula is:Hi = height of imageHo = height of objectSi = Distance of image from lensSo = Distance of object from lensYou are trying to find Si, so that is your unknown.Here is your formula: Hi/Ho = Si/SoOr in this case: 3.5/13 = Si/51The rest is basic algebra.Good luck!You can use the ratio equation; (Image Height)/(object height) = - (image location)/(object location) In your case you will get a negative location which means the image is on the same side of the lens as the incoming light.
The formula used to calculate the image distance for a diverging lens is 1/f = 1/d_o + 1/d_i, where f is the focal length of the lens, d_o is the object distance, and d_i is the image distance. Given the object distance of 51 mm, the object height of 13 mm, and the image height of 3.5 mm, the image distance from the lens can be calculated using the equation and appropriate algebraic rearrangements.
The relation between the distance and height of an object and the image goes like this:L1/H1=L2/H2where L1 and H1 is the Length of the object from the lens and H1 is the height of the object respectively. Same goes for L2, H2 except these are for the image of the same object.If you put values in the above formula, the distance of the image from the lens comes out to be 13.73mm
Since the image is virtual and upright, it is located on the same side as the object. Using the lens formula 1/f = 1/dO + 1/dI, where f is the focal length, dO is the object distance, and dI is the image distance, you can calculate the image distance. Given the object distance (51 mm), object height (13 mm), and image height (3.5 mm), it would be possible to determine the image distance and thus find out the distance from the lens at which the image is located.
The image distance can be calculated using the lens formula: 1/f = 1/d_o + 1/d_i, where f is the focal length of the lens, d_o is the object distance, and d_i is the image distance. Given that the object distance (d_o) = 51 mm and object height = 13 mm, image height = -3.5 (negative since it is inverted), we can use the magnification formula to find the image distance (d_i). The equation for magnification is M = -d_i/d_o = -hi/ho, where hi is the image height and ho is the object height. Solving these equations will give the image distance in front of the lens.
The image of the object in a plane mirror is located at the same distance behind the mirror as the object is in front of it. Therefore, the image of the object would be located 15 millimeters behind the mirror.
The rear height sensor is above the differential and in front of the spare tire. The front one is supposed to be behind the left front tire (but I can't confirm that).