from silicon to iron, about a day.
When a star explodes in a supernova, its core can collapse into either a neutron star or a black hole, depending on the mass of the original star. For stars with masses less than about 3 times that of the Sun, the core collapses into a neutron star, which is an extremely dense and compact object. For more massive stars, the core collapses further into a singularity, forming a black hole.
Unless a star ts very old and very massive, it will not consume oxygen. Stars are powered by nuclear fusion, which fuses hydrogen into helium. When a star runs out of hydrogen at its core it expands into a red giant and starts fusing hydrogen in a shell around the core. If the star is not massive enough to fuse helium, then it will shed its outer layers and leave a helium while dwarf where the core was. If it is massive enough, it will fuse helium into heavier elements up to oxygen. Most stars to not make it past this stage. More massive stars, though fuse elements such as carbon and oxygen into neon, magnesium, and sulfur. If at any stage the star can fuse no more, the it sheds its outer layers and leaves behind a white dwarf. The exception is if the star makes it as far as fusing iron. If that happens the core will stop producing energy. The core will collapse into either a black hole or a neutron star and the rest of the star's mass will be blown away in a massive explosion called a supernova.
Massive stars evolve in a similar way to small stars until it reaches its main sequence stage The stars shine steadily until the hydrogen has fused to form helium ( it takes billions of years in a small star, but only millions in a massive star). The massive star then becomes a Red Supergiant and starts of with a helium core surrounded by a shell of cooling, expanding gas. In the next million years a series of nuclear reactions occur forming different elements in shells around the iron core. The core collapses in less than a second, causing an explosion called a Supernova, in which a shock wave blows of the outer layers of the star. (The actual supernova shines brighter than the entire galaxy for a short time). Sometimes the core survives the explosion. If the surviving core is between 1.5 - 3 solar masses it contracts to become a a tiny, very dense Neutron Star. If the core is much greater than 3 solar masses, the core contracts to become a Black Hole. 1.nebula 2.protostar 3.blue giant, then it expands in to a 4.red super giant 5.super nova 6.then it cools in to a black hole or a neutron star
The leftover center of an old star can become either a white dwarf, neutron star, or black hole, depending on its original mass. A white dwarf forms from stars like our Sun, where the outer layers are shed, leaving a hot core that gradually cools. Neutron stars arise from more massive stars that undergo supernova explosions, resulting in a dense core primarily composed of neutrons. If the original star is sufficiently massive, it can collapse into a black hole after its supernova phase.
Once a star's nuclear fusion has ended, it will collapse inside its core and become what is known as a white dwarf. Its outer layers will shoot out into the universe as planet nebula. If they are very large, stars will explode into a Supernova and their core will collapse into a black hole.
an expanding Shell of hydrogen gas envelop the core of the star which collapses ,it becomes a red giant. In more massive star with hotter core ,helium fuses to carbon,silicon or oxygen, synthesizing the heavier element .even more massive stars may burns iron generating a cooling effect . The core implodls and the outer layer of the stars are bloom away as a supernova
Neutron stars could form in places where there are high-mass stars. After the star runs out of fuel in its core, the core collapses while the shell explodes into the space as supernova. The core would then become a neutron star, it might also become a black hole if it is massive enough.
Yes, most massive stars (at least eight times the mass of our Sun) will end their life cycle by collapsing into a black hole. This happens after they have gone through the stages of supernova explosion and core collapse.
Stars become red giants when they have exhausted their hydrogen fuel in the core and start burning helium, causing the outer layers to expand and cool. This expansion turns the star into a large, cool, and luminous red giant.
Yes, if the star is massive enough when the core collapses a supernova explosion happens.
The question really should be "why do black holes only come from very massive stars". A black hole is formed when a super massive star explodes as a supernova. The remains at the core would collapse and become a very high density body, so dense that light will not escape the surface.
What the core of the star will become is dependent of the mass of the supergiant star. Stars between about 3 and 10 solar masses will generally become neutron stars. Stars above 10 solar masses generally become black holes.
When a star explodes in a supernova, its core can collapse into either a neutron star or a black hole, depending on the mass of the original star. For stars with masses less than about 3 times that of the Sun, the core collapses into a neutron star, which is an extremely dense and compact object. For more massive stars, the core collapses further into a singularity, forming a black hole.
Yes, massive blue stars can eventually collapse and form black holes at the end of their lives. When a blue star exhausts its nuclear fuel, it undergoes a supernova explosion and if the remaining core is massive enough, it can collapse into a black hole due to gravitational forces.
Most massive stars will eventually form black holes after they go through their life cycle of burning through their nuclear fuel, leading to a supernova explosion. The remnants of the supernova collapse into a dense core, which, if above a certain mass threshold, will become a black hole due to the force of gravity overwhelming other forces.
Unless a star ts very old and very massive, it will not consume oxygen. Stars are powered by nuclear fusion, which fuses hydrogen into helium. When a star runs out of hydrogen at its core it expands into a red giant and starts fusing hydrogen in a shell around the core. If the star is not massive enough to fuse helium, then it will shed its outer layers and leave a helium while dwarf where the core was. If it is massive enough, it will fuse helium into heavier elements up to oxygen. Most stars to not make it past this stage. More massive stars, though fuse elements such as carbon and oxygen into neon, magnesium, and sulfur. If at any stage the star can fuse no more, the it sheds its outer layers and leaves behind a white dwarf. The exception is if the star makes it as far as fusing iron. If that happens the core will stop producing energy. The core will collapse into either a black hole or a neutron star and the rest of the star's mass will be blown away in a massive explosion called a supernova.
Yes, both black holes and neutron stars are remnants of the death of massive stars. Neutron stars form when the core of a massive star collapses but does not produce a black hole. Black holes are formed when the core of a massive star collapses beyond the neutron star stage.