If a star is moving away from you, the emission lines in its spectrum will be shifted
toward longer wavelengths/lower frequency/the red end of the spectrum, since they
originate on the star itself.
But there's no effect on the absorption lines, because those are caused by material
that's unrelated to the star, and just happens to be in the line of sight between the
star and you.
Yes. If the star is moving away from the Earth, its spectral lines will shift towards the red end of the spectrum. If it is moving towards the Earth, its spectral lines will shift towards the violet end of the spectrum. This is due to Doppler effect.
The frequency of light from a star is reduced (its wavelength increased) when the star is moving away from the observer. Red light has longer wavelengths than blue light. So the light from a star which is moving away from the earth appears to be redder than it actually was. This phenomenon is similar to the pitch of an ambulance siren dropping as it passes you and is moving away. The true spectrum for light from a star depends on the temperature of the star, but there are characteristic absorption lines (dark lines) in the spectrum which are specific to chemical elements which are present in the outer regions of the stars - such as hydrogen and helium. Light from within the star is absorbed by the atoms of these elements when they move from a low-energy state to one with a higher energy level. A comparison of where in the spectrum these lines appear to be against where they should be (for a stationary) star are a measure of the red-shift (or blue shift).A red shift is observed if an object is moving away from the earth while a blue shift is observed if it is approaching the earth.
blue shifted
Astronomers use the Doppler effect to determine if a star is moving towards or away from us. By observing the shift in the star's spectral lines towards the blue end of the spectrum (blueshift) or the red end of the spectrum (redshift), astronomers can infer the star's motion relative to Earth. Blueshift indicates the star is moving towards us, while redshift indicates it is moving away from us.
A red shift in the spectrum of light from an object indicates that the object is moving away from the observer. This is a result of the Doppler effect, where the wavelengths of light are stretched as the object moves away, causing a shift towards the red end of the spectrum.
It means the heading towards us, red means it is moving away from us.
Yes. If the star is moving away from the Earth, its spectral lines will shift towards the red end of the spectrum. If it is moving towards the Earth, its spectral lines will shift towards the violet end of the spectrum. This is due to Doppler effect.
The star's spectrum is analyzed; certain lines in the spectrum, which have a fixed position, will change their position when the object moves away from us or towards us.
It means the heading towards us, red means it is moving away from us.
Objects moving toward you will have a blue shift in their spectrum and objects moving away from you will have a red shift in their spectrum. This is known as a doppler shift.
The colours with which an element (metal or other) burns in a flame are the same colours which are absorbed by that element in the sun's spectrum. The colours are very specific to each element and show up as distinct black lines in the solar spectrum. By studying the spectrum it is possible to tell what elements are in the sun [or star] and also their relative abundance.If a star is moving away from us absorption lines are red-shifted [move towards the red end of the spectrum]. The faster the star is moving away, the greater the red-shift. Also, as Hubble discovered, the greater the red-shift, the further away the star is. So the red shift in the absorption spectrum is a measure of not only how fast the star is receding from us but also how far it is. This allows us to tell whether two stars which are apparently in the same direction are actually close together or simply a coincidental alignment of their lines of sight.
When the source of light is moving away from us, any reconizable features againstthe background of its continuous spectrum ... such as discrete absorption or emissionlines ... are shifted toward longer wavelengths.In order to recognize that somethng is going on, we must be able to identify theorigin of the features, and know what wavelength they belong at. If we just seesome lines on top of some colors, none of that tells us anything.
The more spectral lines of a star are shifted to the red end of the spectrum, the more it indicates that the star is moving away from us. This phenomenon is known as redshift, and it is a result of the Doppler effect caused by the expansion of the universe.
By examining its spectrum, and identifying absorption lines in it. Lines are shifted toward shorter wavelength if the object is moving towards us. They're shifted toward longer wavelength if the object is moving away from us.
The frequency of light from a star is reduced (its wavelength increased) when the star is moving away from the observer. Red light has longer wavelengths than blue light. So the light from a star which is moving away from the earth appears to be redder than it actually was. This phenomenon is similar to the pitch of an ambulance siren dropping as it passes you and is moving away. The true spectrum for light from a star depends on the temperature of the star, but there are characteristic absorption lines (dark lines) in the spectrum which are specific to chemical elements which are present in the outer regions of the stars - such as hydrogen and helium. Light from within the star is absorbed by the atoms of these elements when they move from a low-energy state to one with a higher energy level. A comparison of where in the spectrum these lines appear to be against where they should be (for a stationary) star are a measure of the red-shift (or blue shift).A red shift is observed if an object is moving away from the earth while a blue shift is observed if it is approaching the earth.
The frequency of light from a star is reduced (its wavelength increased) when the star is moving away from the observer. Red light has longer wavelengths than blue light. So the light from a star which is moving away from the earth appears to be redder than it actually was. This phenomenon is similar to the pitch of an ambulance siren dropping as it passes you and is moving away. The true spectrum for light from a star depends on the temperature of the star, but there are characteristic absorption lines (dark lines) in the spectrum which are specific to chemical elements which are present in the outer regions of the stars - such as hydrogen and helium. Light from within the star is absorbed by the atoms of these elements when they move from a low-energy state to one with a higher energy level. A comparison of where in the spectrum these lines appear to be against where they should be (for a stationary) star are a measure of the red-shift (or blue shift).A red shift is observed if an object is moving away from the earth while a blue shift is observed if it is approaching the earth.
blue shifted