hydrostatic
Dynamic equilibrium.
The two competing forces in a star are gravity, which tries to collapse the star under its own weight, and nuclear fusion, which generates energy and causes the star to expand outward. These forces balance each other to maintain a stable, long-lived star.
The outward forces on a star, primarily generated by nuclear fusion in its core, counterbalance the inward gravitational forces trying to collapse the star. The balance between these forces determines the star's size and stability; if the outward pressure increases (e.g., from increased fusion due to higher core temperatures), the star expands. Conversely, if the inward gravitational force becomes stronger (e.g., from a depletion of nuclear fuel), the star contracts. Thus, the interplay of these forces is crucial in defining a star's size and evolutionary state.
Hydrostatic equilibrium occurs when compression due to gravity is balanced by a pressure gradient which creates a pressure gradient force in the opposite direction. The balance of these two forces is known as the hydrostatic balance.
hydrostatic
Dynamic equilibrium.
The balance of forces that keep a star from collapsing is called hydrostatic equilibrium. This equilibrium is maintained between the inward force of gravity and the outward force generated by gas pressure within the star.
The two competing forces in a star are gravity, which tries to collapse the star under its own weight, and nuclear fusion, which generates energy and causes the star to expand outward. These forces balance each other to maintain a stable, long-lived star.
Inside a star, there are two opposing forces at play: gravity tries to pull the stellar material inward, compressing it, while the force of nuclear fusion in the star's core pushes outward, generating energy and counteracting gravity to maintain the star's stability. These forces must balance each other for the star to remain in a state of equilibrium.
The outward forces on a star, primarily generated by nuclear fusion in its core, counterbalance the inward gravitational forces trying to collapse the star. The balance between these forces determines the star's size and stability; if the outward pressure increases (e.g., from increased fusion due to higher core temperatures), the star expands. Conversely, if the inward gravitational force becomes stronger (e.g., from a depletion of nuclear fuel), the star contracts. Thus, the interplay of these forces is crucial in defining a star's size and evolutionary state.
The two opposing forces are gravity, pulling the star in and the outward force from the ongoing nuclear fusion reactions. As the star approaches the end of it's life, changes in the reactions occur, which cause the forces to balance out in different ways, changing the size of the star.
The shape of a star is maintained by the balance between gravitational forces and nuclear fusion pressure. Gravity pulls matter inward, while the energy produced by nuclear fusion in the star's core generates an outward pressure that counteracts this pull. When these forces are in equilibrium, the star remains stable in its shape. If either force changes significantly, it can lead to different stellar evolution stages or even the star's collapse or explosion.
The outward force is the pressure generated by nuclear fusion in the star's core, which counteracts the inward force of gravity trying to compress the star. The balance between these forces determines the size and stability of the star. If the outward pressure exceeds the gravitational force, the star can maintain its size and stability.
Hydrostatic equilibrium occurs when compression due to gravity is balanced by a pressure gradient which creates a pressure gradient force in the opposite direction. The balance of these two forces is known as the hydrostatic balance.
Balance of Power - Star Trek - was created in 1994.
That's because forces will ONLY balance under very specific circumstances.