40x
The magnification of the eyepiece lens in a microscope is typically 10x. This means that when combined with the magnification of the objective lens, the total magnification of the microscope is calculated by multiplying the magnification of the eyepiece by the magnification of the objective lens.
The total magnification of a light microscope with a 40x objective lens is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece lens. Assuming a standard eyepiece magnification of 10x, the total magnification would be 400x (40x objective lens * 10x eyepiece lens = 400x total magnification).
The objective lens with the lowest magnification typically has the greatest field of view. For example, a 4x objective lens will provide a wider field of view compared to higher magnification lenses like 10x or 40x. This is because lower magnification allows more of the specimen to be visible in the microscope's field.
The magnification of an eyepiece lens in a microscope typically ranges from 10x to 25x. This means that the eyepiece lens enlarges the image of the specimen viewed through it by that factor. The total magnification of the microscope is calculated by multiplying the eyepiece magnification by the magnification of the objective lens being used. For example, using a 10x eyepiece with a 40x objective results in a total magnification of 400x.
The objective lens in a microscope helps to magnify the object being viewed on the slide. The objective lens can be rotated to change the magnification of the lens and yield a different view.
The objective lens is the part of a microscope that allows for the greatest magnification. It is located at the bottom of the microscope and is responsible for gathering light and magnifying the image of the specimen. By using different objective lenses with varying magnification powers, the total magnification of the microscope can be increased.
The magnification of the eyepiece lens in a microscope is typically 10x. This means that when combined with the magnification of the objective lens, the total magnification of the microscope is calculated by multiplying the magnification of the eyepiece by the magnification of the objective lens.
The total magnification of a light microscope with a 40x objective lens is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece lens. Assuming a standard eyepiece magnification of 10x, the total magnification would be 400x (40x objective lens * 10x eyepiece lens = 400x total magnification).
To calculate the total magnification of a microscope, you multiply the magnification of the objective lens by the magnification of the eyepiece. For example, if the objective lens has a magnification of 40x and the eyepiece has a magnification of 10x, the total magnification would be 40x * 10x = 400x.
multiply the magnification of the eyepiece by the magnification of the high objective lens. for example, if the eyepiece magnifies x10, and the high objective magnifies x40, then the total magnification would be 400x
The total magnification of a microscope is determined by multiplying the magnification of the objective lens by the magnification of the eyepiece lens. For example, if the objective lens has a magnification of 10x and the eyepiece lens has a magnification of 20x, the total magnification would be 10x * 20x = 200x.
The total magnification of a compound microscope is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece. So, total magnification = magnification of objective lens x magnification of eyepiece.
The magnification of a microscope is determined by multiplying the magnification of the objective lens by the magnification of the eyepiece. For example, if the objective lens has a magnification of 10x and the eyepiece has a magnification of 20x, the total magnification would be 10x * 20x = 200x.
The magnification of a compound light microscope is determined by multiplying the magnification of the ocular lens (eyepiece) by the magnification of the objective lens. For example, if the ocular lens has a magnification of 10x and the objective lens has a magnification of 40x, the total magnification would be 10x * 40x = 400x.
Simply, multiply the magnification of the ocular lens times the magnification of the objective lens you have in place.
The total magnification of a compound microscope is calculated by multiplying the magnification of the eyepiece lens by the magnification of the objective lens. In this case, with a 10x eyepiece lens and a 20x objective lens, the total magnification would be 10x * 20x = 200x. Therefore, the total magnification of the microscope is 200x.
The objective lens in a microscope is responsible for magnifying the specimen being viewed. It gathers light from the specimen and focuses it to create an enlarged image that can be viewed through the eyepiece. The objective lens determines the resolution and magnification of the microscope.