On such a diagram, those stars lie on a curve called the "main sequence". It is not a simple relationship - for example, it isn't a straight line on the diagram. Therefore, it isn't easy to describe in words. It's best if you look up "Main sequence", for example on the Wikipedia, and look at the corresponding diagram.
On a logarithmic scale for luminosity, it is quite close to a negative linear relationship.
The scatter plot of the relationship between a star's temperature and luminosity is represented by the Hertzsprung-Russell diagram. In a standard H-R diagram the horizontal axis shows the [surface] temperature, increasing from right to left, while the vertical axis shows luminosity increasing from bottom to top. When both axis are on a logarithmic scale, the main sequence stars from a diagonal belt stretching from top right (very hot and very luminous) to bottom left (not so hot and not so luminous).
The relationship between a star's temperature and luminosity is described by the Stefan-Boltzmann Law, which states that a star's luminosity (total energy output) is proportional to the fourth power of its surface temperature (in Kelvin) multiplied by its surface area. This means that as a star's temperature increases, its luminosity increases significantly, assuming other factors like size remain constant. Additionally, hotter stars tend to be larger and more luminous than cooler stars, which further emphasizes the interconnectedness of temperature and luminosity in stellar properties.
The Hertzsprung-Russell (H-R) diagram illustrates the relationship between a star's surface temperature (or color) and its luminosity (or absolute brightness). Stars are typically plotted on this diagram with temperature decreasing from left to right, and luminosity increasing from bottom to top. The position of a star on the H-R diagram indicates its stage in the stellar lifecycle, with main sequence stars, giants, and white dwarfs occupying different regions. Thus, a star's temperature and luminosity provide insights into its size, age, and evolutionary status.
About 90 percent of stars are classified as main sequence stars, which are stable, fusing hydrogen into helium in their cores. These stars follow a distinct relationship between their luminosity and temperature, known as the Hertzsprung-Russell diagram. Main sequence stars include our Sun and have a lifespan ranging from millions to billions of years.
as surface temperature increases, luminosity increases
The relationship between luminosity and temperature for stars on the main sequence is described by the Hertzsprung-Russell (H-R) diagram, where more luminous stars are typically hotter. This relationship is generally expressed by the Stefan-Boltzmann law, which states that a star's luminosity is proportional to the fourth power of its temperature (L ∝ T⁴). Consequently, as the temperature of a main sequence star increases, its luminosity also increases significantly, resulting in a clear trend where hotter stars are brighter.
The relationship between luminosity and temperature for main sequence stars is described by the Hertzsprung-Russell diagram, where luminosity increases with temperature. This correlation follows a power law, specifically L ∝ T^4, meaning that if a star's temperature increases, its luminosity increases dramatically. Consequently, hotter main sequence stars, like O and B types, are much more luminous than cooler stars, such as K and M types. This relationship arises from the processes of nuclear fusion occurring in the star's core, which depend on temperature and pressure.
The relationship between luminosity and temperature for stars on the main sequence is described by the Hertzsprung-Russell diagram, where more luminous stars tend to have higher temperatures. This correlation is largely due to the processes of nuclear fusion occurring in the star's core; as temperature increases, the rate of fusion rises, leading to greater energy output and, consequently, increased luminosity. Specifically, this relationship can be approximated by the Stefan-Boltzmann Law, which states that luminosity increases with the fourth power of the star's temperature. Thus, main sequence stars exhibit a clear trend where hotter stars are generally more luminous.
On a logarithmic scale for luminosity, it is quite close to a negative linear relationship.
The scatter plot of the relationship between a star's temperature and luminosity is represented by the Hertzsprung-Russell diagram. In a standard H-R diagram the horizontal axis shows the [surface] temperature, increasing from right to left, while the vertical axis shows luminosity increasing from bottom to top. When both axis are on a logarithmic scale, the main sequence stars from a diagonal belt stretching from top right (very hot and very luminous) to bottom left (not so hot and not so luminous).
Main sequence stars best obey the mass-luminosity relation. This empirical relation states that there is a direct relationship between a star's mass and its luminosity. In general, the more massive a main sequence star is, the more luminous it will be.
The relationship between a star's temperature and luminosity is described by the Stefan-Boltzmann Law, which states that a star's luminosity (total energy output) is proportional to the fourth power of its surface temperature (in Kelvin) multiplied by its surface area. This means that as a star's temperature increases, its luminosity increases significantly, assuming other factors like size remain constant. Additionally, hotter stars tend to be larger and more luminous than cooler stars, which further emphasizes the interconnectedness of temperature and luminosity in stellar properties.
The Hertzsprung-Russell (H-R) diagram illustrates the relationship between a star's surface temperature (or color) and its luminosity (or absolute brightness). Stars are typically plotted on this diagram with temperature decreasing from left to right, and luminosity increasing from bottom to top. The position of a star on the H-R diagram indicates its stage in the stellar lifecycle, with main sequence stars, giants, and white dwarfs occupying different regions. Thus, a star's temperature and luminosity provide insights into its size, age, and evolutionary status.
The HR diagram, also known as the Hertzsprung-Russell diagram, depicts the relationship between the luminosity and temperature of stars. It shows how stars are distributed in terms of their brightness and temperature, allowing astronomers to classify stars based on these characteristics.
The location on the Hertzsprung-Russell (HR) diagram where most stars lie is known as the main sequence. The HR diagram is a plot of stellar luminosity against surface temperature. The main sequence is a prominent band that extends diagonally across the HR diagram from high temperature and high luminosity to low temperature and low luminosity. The majority of stars, approximately 90% of all stars, are situated along the main sequence on the HR diagram. These stars are often referred to as main-sequence stars. They exhibit a smooth relationship between surface temperature and luminosity, with varying sizes and masses but sharing this common characteristic of lying on the diagonal band from the upper left to the lower right of the HR diagram. Source: Teach Astronomy - The Hertzsprung-Russell Diagram
About 90 percent of stars are classified as main sequence stars, which are stable, fusing hydrogen into helium in their cores. These stars follow a distinct relationship between their luminosity and temperature, known as the Hertzsprung-Russell diagram. Main sequence stars include our Sun and have a lifespan ranging from millions to billions of years.