Main Sequence
between the yellow stage color on the digram
Does it mean that the star is a main sequesnce star? ( . Y . ) The above isn't true. A star can be a blue supergiant and be on the main sequence but still not be even visible to us, therefore the apparent and absolute magnitude wouldn't be the same. But to answer your question, I don't think it has a name, it just means that you are seeing the star's absolute and apparent magnitude at the same time, so if you placed the star at 32.6 light years away(the absolute magnitude scale)then the star would not appear to change in brightness
The apparent magnitude is how bright the star appears to us, but stars are all at different distances so that a star that is really bright might look dim because it is very far away. So the absolute magnitude measures how bright the star would look if it was placed at a standard distance of 10 parsecs. When the absolute magnitude is greater than the apparent magnitude, it just means that it is closer than 10 pc. The brightest stars have absolute magnitudes around -7.
Absolute magnitude refers to a measure of the real brightness of a star. In terms of absolute magnitude, a blue-violet star is classified as bright, while an orange-red star is classified as faint.
well my reason is that the betelgeuse must be very large , because they said that the betelgeuse is located far from earth .
between the yellow stage color on the digram
"Absolute magnitude" talks about the intensity of light radiating from a source. The black hole is black because no light radiates from it. So you'd have to say that its magnitude ... visual, absolute, intrinsic, or any other kind of magnitude ... is infinite. (Magnitude numbers are higher for dimmer sources.)
Spica has a surface temperature of 22,400K and an absolute magnitude of -3.55Rigel has a surface temperature of 11,000K and an absolute magnitude of -6.7So the question is incorrect.
The question is: Why is the apparent magnitude of some stars less than their absolute magnitude. Or: Why do some stars not look as bright as they really are ? The answer is: Because they're so far away from us.
Does it mean that the star is a main sequesnce star? ( . Y . ) The above isn't true. A star can be a blue supergiant and be on the main sequence but still not be even visible to us, therefore the apparent and absolute magnitude wouldn't be the same. But to answer your question, I don't think it has a name, it just means that you are seeing the star's absolute and apparent magnitude at the same time, so if you placed the star at 32.6 light years away(the absolute magnitude scale)then the star would not appear to change in brightness
Absolute magnitude and apparent magnitude are the same because they are both ways on how to measure the brightness of a star. Absolute magnitude is how bright is the star if we will see it in a 32.616 light-years distance while apparent magnitude is the brightness of it that we see on Earth.
No because of its proximity to the earth.
The standard distance used for evaluating absolute magnitude is 10 parsec.The standard distance used for evaluating absolute magnitude is 10 parsec.The standard distance used for evaluating absolute magnitude is 10 parsec.The standard distance used for evaluating absolute magnitude is 10 parsec.
The apparent magnitude is how bright the star appears to us, but stars are all at different distances so that a star that is really bright might look dim because it is very far away. So the absolute magnitude measures how bright the star would look if it was placed at a standard distance of 10 parsecs. When the absolute magnitude is greater than the apparent magnitude, it just means that it is closer than 10 pc. The brightest stars have absolute magnitudes around -7.
The Kelvin scale is an absolute temperature scale that measures temperature in relation to absolute zero, which is the theoretical point where all molecular motion ceases. It is used in scientific and engineering applications because it is directly proportional to the average kinetic energy of atoms or molecules in a substance.
One dimmer star can be closer than a brighter star that is far away. Light flux decreases as the square of the distance. A star that is three times as far away will have to shine nine times brighter than the closer star (absolute magnitude) to appear to have the same magnitude (apparent magnitude). Because apparent magnitude is the brightness of a star, as seen from Earth, whereas absolute magnitude is the brightness of a star as seen from the same distance - about 32.6 light years away.
The apparent magnitude is what we see, and this can be measured directly. The absolute magnitude must be calculated, mainly on the basis of (1) the apparent magnitude, and (2) the star's distance. So, to calculate the absolute magnitude, you must first know the star's distance.