A black dwarf
See related question for more details
You can find the luminosity of a main sequence star by measuring its apparent brightness and distance from Earth. Knowing the distance allows you to calculate the star's absolute brightness. Luminosity is then determined by comparing the absolute brightness of the star to that of the Sun, which has a known luminosity.
the size of a star
I was enthralled by the luminosity of the deep water jellyfish.
The reference that astronomers use to compare the luminosity of other stars is the sun's luminosity. The luminosity is denoted in multiples of the sun's luminosity. For example, the luminosity of the star Sirius is 25 times the luminosity of the sun.
To determine a star's luminosity, one can measure its apparent brightness as seen from Earth and correct for distance. Using this information along with the star's surface temperature, one can apply the Stefan-Boltzmann law to calculate the star's luminosity. This process allows astronomers to compare the intrinsic brightness of stars regardless of their distance from Earth.
A star's luminosity is measured according to the relevance to the sun. Basically for example, if a star is 8,300 degrees Celsius and has a luminosity of 0.001; the luminosity is compared to the sun.
The main star in the Polaris system has a luminosity which is 2500 times that of the Sun.
You can find the luminosity of a main sequence star by measuring its apparent brightness and distance from Earth. Knowing the distance allows you to calculate the star's absolute brightness. Luminosity is then determined by comparing the absolute brightness of the star to that of the Sun, which has a known luminosity.
the size of a star
I was enthralled by the luminosity of the deep water jellyfish.
The reference that astronomers use to compare the luminosity of other stars is the sun's luminosity. The luminosity is denoted in multiples of the sun's luminosity. For example, the luminosity of the star Sirius is 25 times the luminosity of the sun.
The brightness of a Cepheid star is determined by its period-luminosity relationship, which is a relationship between the star's variability period and its intrinsic luminosity. By measuring the period of a Cepheid star, astronomers can use the period-luminosity relationship to calculate its luminosity, and from there determine its apparent brightness as observed from Earth.
A star's luminosity is the measure of the total energy radiated by the star in one second.
It is a triple star system. Therefore every single star has different luminosity. However, as a whole the system is seen from earth at an appereant magnitude of 3.47, which means only %6 luminosity of the star vega.
Astronomers use luminosity to measure the total amount of energy a star emits in all directions. By knowing a star's luminosity, astronomers can calculate its distance, size, and temperature. Luminosity helps astronomers understand the life cycle of stars and their evolution.
In that case, both the star's diameter and its luminosity greatly increase.
By it's luminosity.