A star's luminosity is measured according to the relevance to the sun. Basically for example, if a star is 8,300 degrees Celsius and has a luminosity of 0.001; the luminosity is compared to the sun.
I was enthralled by the luminosity of the deep water jellyfish.
The form of measurement that can be defined as the rate at which a star gives off energy is luminosity. Luminosity is measured in watts and indicates the total amount of energy emitted by a star per unit time.
The main star in the Polaris system has a luminosity which is 2500 times that of the Sun.
In astronomy, Luminosity is the amount of energy a body radiates per unit time. The luminosity of stars is measured in two forms: apparent (counting visible light only) and bolometric (total radiant energy); a bolometer is an instrument that measures radiant energy over a wide band by absorption and measurement of heating. When not qualified, luminosity means bolometric luminosity, which is measured in the SI units watts, or in terms of solar luminosities, ; that is, how many times as much energy the object radiates than the Sun, whose luminosity is 3.846×1026 W. Luminosity is an intrinsic constant independent of distance, and is measured as absolute magnitude corresponding to apparent luminosity, or bolometric magnitude corresponding to bolometric luminosity. In contrast, apparent brightness is related to distance by an inverse square law. Visible brightness is usually measured by apparent magnitude, which is on a logarithmic scale. In measuring star brightnesses, visible luminosity (not total luminosity at all wave lengths), apparent magnitude (visible brightness), and distance are interrelated parameters. If you know two, you can determine the third. Since the sun's luminosity is the standard, comparing these parameters with the sun's apparent magnitude and distance is the easiest way to remember how to convert between them.
Generally, the larger the star, the more luminous it is.However, luminosity is measured as the visible light of a star as seen at the interstellar distance of 10 parsecs.So a massive star could have a lower luminosity than a bright blue supergiant.
You can find the luminosity of a main sequence star by measuring its apparent brightness and distance from Earth. Knowing the distance allows you to calculate the star's absolute brightness. Luminosity is then determined by comparing the absolute brightness of the star to that of the Sun, which has a known luminosity.
the size of a star
The reference that astronomers use to compare the luminosity of other stars is the sun's luminosity. The luminosity is denoted in multiples of the sun's luminosity. For example, the luminosity of the star Sirius is 25 times the luminosity of the sun.
The brightness of a Cepheid star is determined by its period-luminosity relationship, which is a relationship between the star's variability period and its intrinsic luminosity. By measuring the period of a Cepheid star, astronomers can use the period-luminosity relationship to calculate its luminosity, and from there determine its apparent brightness as observed from Earth.
A star's luminosity is the measure of the total energy radiated by the star in one second.
Luminosity is the total amount of energy emitted by a star per unit time. For the Sun, luminosity is measured by calculating the total amount of energy it emits in all directions per second. This is done by combining measurements of the Sun's surface temperature and radius with the Stefan-Boltzmann law.
It is a triple star system. Therefore every single star has different luminosity. However, as a whole the system is seen from earth at an appereant magnitude of 3.47, which means only %6 luminosity of the star vega.