The strength of gravity decreases as the SQUARE of the distance between the two objects (in this case, Earth and person). That means the pull will get weaker VERY quickly as you travel further and further away from the Earth, until it dwindles to almost nothing.
Astronauts in space are far enough away from the Earth (or any other massive bodies) that they feel almost no gravitational pull. That is why they 'float' around.
All objects on Earth experience gravitational force to a certain degree. Earth's atmosphere grants it's objects a great gravitational force.+++"All objects throughout the Universe experience gravitational force... " Not just on Earth. The Earth's orbit around the Sun is a function of the Earth's velocity and the Sun's gravity.The Earth's atmosphere does NOT "grant" any gravitational force of its objects (whatever those may be), but is itself subject to the gravity of the planet; hence both it still being here, and exerting a mean pressure of I Bar (by definition) or 100kPa at sea-level.
Astronauts weigh less on the Moon than on Earth due to the Moon's weaker gravitational pull. Gravity is determined by mass and distance; the Moon has only about one-sixth the mass of Earth and a smaller radius, resulting in lower gravitational force. Consequently, objects and people experience less weight on the Moon, making them feel lighter and allowing them to jump higher and move more easily.
Earth has gravity or gravitational force that attracts the moon to the Earth.
The null point, also known as the Lagrange point, where the gravitational force of Earth equals the gravitational force of the Moon is at a distance of about 56,000 kilometers (35,000 miles) from the center of the Earth, in the direction of the Moon. At this point, the forces are balanced, so an object placed there would experience zero net gravitational force from the Earth and Moon.
The amount of gravitational force acting on the space shuttle in orbit is still significant, approximately 90% of the force experienced on the surface of the Earth. This force is what keeps the shuttle and astronauts in orbit around the Earth, counteracting the centripetal force that tries to pull them away.
Yes, but they do not "feel" gravity, because they are falling - "free fall" in orbit around the Earth.
Like everywhere else on the surface of the Earth, the force of gravity is 9.8 Nkg-1. The astronauts on the Shuttle lift-off experience a gravitational-pull "G-Force" of not more than 3-g's (acceleration 29.4 m/s²) but astronauts train for up to 6-g's.
All objects on Earth experience gravitational force to a certain degree. Earth's atmosphere grants it's objects a great gravitational force.+++"All objects throughout the Universe experience gravitational force... " Not just on Earth. The Earth's orbit around the Sun is a function of the Earth's velocity and the Sun's gravity.The Earth's atmosphere does NOT "grant" any gravitational force of its objects (whatever those may be), but is itself subject to the gravity of the planet; hence both it still being here, and exerting a mean pressure of I Bar (by definition) or 100kPa at sea-level.
Nothing keeps them from being pulled. Earth's gravity certainly pulls on them.
In orbit, astronauts appear weightless and float because they are in a state of constant freefall towards Earth. Due to the lack of air resistance and the gravitational pull being the only force acting on them, they experience the sensation of weightlessness.
The gravitational field strength on Mercury is approximately 3.7 m/s^2. This means that objects on the surface of Mercury experience a gravitational force that is 3.7 times that of Earth's gravitational force.
Well.................. the gravitational force of earth exerts a force of 9.8m/s squared.
There is oxygen and gravitational force on earth but there is no oxygen and gravitational force
Earth has gravity or gravitational force that attracts the moon to the Earth.
The Earth's gravitational force acts towards the center of the Earth.
The null point, also known as the Lagrange point, where the gravitational force of Earth equals the gravitational force of the Moon is at a distance of about 56,000 kilometers (35,000 miles) from the center of the Earth, in the direction of the Moon. At this point, the forces are balanced, so an object placed there would experience zero net gravitational force from the Earth and Moon.
The amount of gravitational force acting on the space shuttle in orbit is still significant, approximately 90% of the force experienced on the surface of the Earth. This force is what keeps the shuttle and astronauts in orbit around the Earth, counteracting the centripetal force that tries to pull them away.