The luminosity of a star depends greatly on the star's mass. A more massive star has a larger pressure and temperature in its core; as a result, nuclear fusion will proceed at a faster rate.
Magnitude is the common term, the luminosity of a star is also used.
The luminosity of the star would decrease by a factor of four. Luminosity is directly proportional to the inverse square of the distance from the star. So, if the distance is doubled, the luminosity decreases by a factor of 2^2 = 4.
You can find the luminosity of a main sequence star by measuring its apparent brightness and distance from Earth. Knowing the distance allows you to calculate the star's absolute brightness. Luminosity is then determined by comparing the absolute brightness of the star to that of the Sun, which has a known luminosity.
the size of a star
I was enthralled by the luminosity of the deep water jellyfish.
Magnitude is the common term, the luminosity of a star is also used.
A star's luminosity is measured according to the relevance to the sun. Basically for example, if a star is 8,300 degrees Celsius and has a luminosity of 0.001; the luminosity is compared to the sun.
Sirius
Luminosity affects the habitable zone (CHZ) by determining the distance at which a planet would need to be from a star to have the right temperature for liquid water to exist on its surface. Stars with higher luminosity would have habitable zones farther out, while stars with lower luminosity would have habitable zones closer in. This means that the size and location of the CHZ around a star depend on its luminosity.
The main star in the Polaris system has a luminosity which is 2500 times that of the Sun.
The luminosity depends on what stage of its life cycle the star is in. Also, the apparent luminosity depends on the distance from earth.
The bigger the star's radius, the greater its surface area which emits the light. The bigger the temperature, the more luminous is the light the star is emitting.
The luminosity of the star would decrease by a factor of four. Luminosity is directly proportional to the inverse square of the distance from the star. So, if the distance is doubled, the luminosity decreases by a factor of 2^2 = 4.
You can find the luminosity of a main sequence star by measuring its apparent brightness and distance from Earth. Knowing the distance allows you to calculate the star's absolute brightness. Luminosity is then determined by comparing the absolute brightness of the star to that of the Sun, which has a known luminosity.
As temperature decreases, luminosity will also decrease As radius increases (and with it surface area, but radius is a much easier to work with if you're trying to compare stars so we usually say radius) luminosity will also increase. If both are happening at the same time, it is possible that the luminosity of the star will remain more or less constant. Often one change will dominate the other, such as when a star goes through the red giant phase when the increase in radius has a far greater effect than the drop in temperature, and the star becomes more luminous.
the size of a star
I was enthralled by the luminosity of the deep water jellyfish.