No. Geostationary orbits are equatorial, but equatorial orbits are not necessarily geostationary. To be geostationary, the orbit needs to be equatorial, circular and at the altitude such that one orbit takes one sidereal day (approximately 24 hours 3 minutes 56 seconds. ) An equatorial orbit need only be located above the equator, may have any period and need not be circular.
A satellite is in geostationary orbit when it orbits the Earth at the same speed and direction as the Earth's rotation. This allows the satellite to appear stationary from the surface of the Earth. Measurements of its position and velocity can confirm that it is in geostationary orbit.
Geo-stationary communication satellites are 35,768 Km far from earth surface at an equatorial latitiude.
A geostationary orbit around the Earth has a radius of approximately 42,164 kilometers.
LEO orbit is closer to the Earth than a geostationary orbit is.There's essentially no difference in their distance from the Sun.
A geostationary orbit is an orbit of the Earth that is circular, over the equator, and at the right distance to have a period of 24 hours. A satellite in such an orbit appears to hang motionless, always at the same point in the sky Anything else is a non-geostationary orbit. A satellite in one of those appears to move in the sky, so that if you want to communicate with it, you need a movable dish.
That's a 'geosynchronous' orbit. If it also happens to be over the equator, so that the satellite appears to stay at the same point in the sky, then it's a 'geostationary' orbit.
Because they can't provide worldwide coverage. To cover near-polar areas, inclined orbits are necessaries. Since the geostationary orbit must lay on the equatorial plane, it doesn't suit to fit GPS requirements.
it's hot. ;)
In geosynchronous orbit, it's always somewhere over the same meridian of longitude.In geostationary orbit, it's always over the same point on the equator.
The time for one (stable) orbit is directly linked to the orbital radius. At one particular radius (geostationary), the resultant stable orbit velocity is exactly enough to match the rotation of the earth, keeping the satellite overhead at all times. This geostationary radius is approximately 42 000 km from earths centre and most geostationary satellites are roughly in the equatorial plane.
An equatorial orbit is a type of orbit around a celestial body that lies in the same plane as the equator of that body. Satellites in equatorial orbits typically follow a path that moves from west to east, and they remain in relatively constant relation to the rotation of the body below. These orbits are often used for communication and weather satellites due to their stable coverage of the Earth's surface.
A geostationary orbit is an orbit of the Earth that is circular, over the equator, and at the right distance to have a period of 24 hours. A satellite in such an orbit appears to hang motionless, always at the same point in the sky Anything else is a non-geostationary orbit. A satellite in one of those appears to move in the sky, so that if you want to communicate with it, you need a movable dish.