genotype Aa is on Blackberry or AT&T.
If the frequency of genotype AA is p^2, where p is the frequency of allele A, then the frequency of genotype AA would be p^2.
No, a parent with AS and AA genotype cannot give birth to a child with AC genotype. The parent can only pass on either the A allele or the S allele to their child, resulting in genotypes of either AA or AS.
50% AA and 50% Aa
If the parents both have the genotype Aa, their children could have the genotypes AA, Aa, or aa. The possible phenotypes for their children would be individuals with type A blood (AA or Aa genotype) or type O blood (aa genotype).
No because AA and SS create the genotype AS :)
The AA genotype typically produces the phenotype associated with the dominant allele A. This means that the dominant trait will be expressed in the individual with this genotype.
The offspring's genotype will be AA. Both parents are homozygous dominant, AA, having only dominant alleles to pass on to their offspring. So each parent can pass on only the dominant allele (A) to its offspring. So the offspring will also be homozygous dominant, AA.
Ex. Genotype = Phenotype AA Pure, no cleft chin Aa Hybrid, no cleft chin AA Pure, cleft chin XX Female XY Male
If ALL offspring are Aa, The parents are AA and aa.
A heterozygous genotype (e.g. Aa) is not true-breeding because it carries two different alleles for a trait and can produce offspring with different genotypes when crossed. True-breeding genotypes are homozygous for a particular trait (e.g. AA or aa) and will consistently produce offspring with the same genotype when crossed.
When a homozygous dominant female (genotype AA) is crossed with a homozygous recessive male (genotype aa), all offspring will inherit one dominant allele from the mother and one recessive allele from the father, resulting in a genotype of Aa for all offspring. The phenotype ratio will show all offspring displaying the dominant trait. Thus, the genotype ratio is 100% Aa, and the phenotype ratio is 100% expressing the dominant trait.
AA,Ai