genotype Aa is on Blackberry or AT&T.
If the frequency of genotype AA is p^2, where p is the frequency of allele A, then the frequency of genotype AA would be p^2.
No, a parent with AS and AA genotype cannot give birth to a child with AC genotype. The parent can only pass on either the A allele or the S allele to their child, resulting in genotypes of either AA or AS.
If the parents both have the genotype Aa, their children could have the genotypes AA, Aa, or aa. The possible phenotypes for their children would be individuals with type A blood (AA or Aa genotype) or type O blood (aa genotype).
50% AA and 50% Aa
No because AA and SS create the genotype AS :)
The AA genotype typically produces the phenotype associated with the dominant allele A. This means that the dominant trait will be expressed in the individual with this genotype.
The offspring's genotype will be AA. Both parents are homozygous dominant, AA, having only dominant alleles to pass on to their offspring. So each parent can pass on only the dominant allele (A) to its offspring. So the offspring will also be homozygous dominant, AA.
When crossing an Aa individual (heterozygous) with an An individual (where 'n' represents a different allele, such as 'aa'), the possible genotypes in the offspring would be Aa, Aa, An, and An. This results in a genotype ratio of 2 Aa: 2 An, or simplified, 1 Aa: 1 An. Therefore, the expected genotype ratio in the next generation would be 1 Aa: 1 An.
Ex. Genotype = Phenotype AA Pure, no cleft chin Aa Hybrid, no cleft chin AA Pure, cleft chin XX Female XY Male
In a heterozygous cross (e.g., Aa x Aa), the possible genotypes of the offspring are AA, Aa, and aa. The probability of having two offspring with the same genotype can be calculated as follows: the probabilities of each genotype are 1/4 for AA, 1/2 for Aa, and 1/4 for aa. Thus, the probability that both offspring have the same genotype is the sum of the probabilities of each genotype occurring twice: (1/4 * 1/4) + (1/2 * 1/2) + (1/4 * 1/4) = 1/16 + 1/4 + 1/16 = 5/16. Therefore, there is a 5/16 chance that both offspring will have the same genotype.
If ALL offspring are Aa, The parents are AA and aa.
A heterozygous genotype (e.g. Aa) is not true-breeding because it carries two different alleles for a trait and can produce offspring with different genotypes when crossed. True-breeding genotypes are homozygous for a particular trait (e.g. AA or aa) and will consistently produce offspring with the same genotype when crossed.