answersLogoWhite

0


Best Answer

When the two parent strands of DNA are separated to begin replication, one strand is oriented in the 5' to 3' direction while the other strand is oriented in the 3' to 5' direction.

DNA replication, however, is inflexible: the enzyme that carries out the replication, DNA polymerase, only functions in the 5' to 3' direction. This characteristic of DNA polymerase means that the daughter strands synthesize through different methods, one adding nucleotides one by one in the direction of the replication fork, the other able to add nucleotides only in chunks.

The first strand, which replicates nucleotides one by one is called the leading strand; the other strand, which replicates in chunks, is called the lagging strand.

The lagging strand replicates in small segments, called Okazaki fragments. These fragments are stretches of 100 to 200 nucleotides in humans (1000 to 2000 in bacteria).

User Avatar

Wiki User

6y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

8y ago

The continuous strand is known as the leading strand.

This answer is:
User Avatar

User Avatar

Wiki User

13y ago

it is called a template.

This answer is:
User Avatar

User Avatar

Anonymous

Lvl 1
3y ago

lagging strand\

This answer is:
User Avatar

User Avatar

Anonymous

Lvl 1
3y ago

The lagging stand~Brainly

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: At each replication fork one new strand of DNA is made of many small pieces. what is the strand of DNA called?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Biology

What is the definition of a lagging strand?

A lagging strand is one of two strands of DNA found at the replication fork, or junction, in the double helix; the other strand is called the leading strand. A lagging strand requires a slight delay before undergoing replication, and it must undergo replication discontinuously in small fragments.


What is an end replication problem?

The two strands of a DNA molecule are antiparallel to one another (the backbone of one strand runs from 5'-3' while the complimentary strand runs 3'-5'). Unfortunately, DNA polymerase, the enzyme responsible for replicating DNA, can only make DNA in a 5'-3' direction (and read DNA in the 3'-5' direction). Also, it needs a "primer" to give it a place to bind and start replication. So this creates a problem when synthesizing the 3'-5' stand because your enzyme will only synthesize 5'-3'. During replication this is solved by synthesizing small pieces of DNA ahead of the replication fork on the 5'-3' mother strand. Thus we have one daughter strand which is synthesized as a continuous piece of DNA (called the leading strand) and one daughter strand which is synthesized in small, discontinuous pieces (called the lagging strand). However, at the extreme end of the DNA, we run into another problem. The leading stand can be made to the very end, but the lagging strand cannot because you need the RNA primer upstream to begin each piece of the lagging strand DNA but at the end of the DNA there is nothing for this piece to attach to. Thus, the last section of the lagging strand cannot be synthesized and after several rounds of DNA replication, the DNA molecule gets smaller and smaller. This is "the end of replication problem" and it is solved by putting a DNA cap on the ends of DNA called a telomere which does not code for any protein, thus when this information is lost it does not have severe consequences for the cell.


Why is replication on one strand of DNA continuous while on the other strand the replication must be discontinuous?

New strands of DNA can only be created in one direction - 5' to 3'. This is because only the 3' end of the DNA is able to join to a new nucleotide. The two strands of DNA are antiparallel - meaning they run in different directions. Therefore only one strand (called the leading strand) is running in the correct direction for continuous replication. The other strand (called the lagging strand) must first be looped around so that small sections can be replicated in the correct direction.


Compare the leading and lagging strands during replication?

the leading strand is synthesized in the same direction as the movement of the replication fork, and the lagging strand is synthesized in the opposite direction


Why are there many replication forks?

A replication fork is the mechanism by which a strand of DNA is synthesized. If you can imagine a strand of DNA unwound, then it would resemble a ladder. Unzip the DNA and it now looks like a fork, ie fork in road, not eating fork. There is a Leading strand, which is synthesised easily. USing DNA polymerase which 'reads' along the strand in the 3' to 5' direction on the strand, producing a replication strand in the 5' to 3' direction. The opposite strand is called the lagging strand, and this is slightly more complicated. DNA polymerase cannot read in the 5' to 3' direction on the template strand. Thus DNA primase is used to read the strand and replicate small RNA segments, called Okazaki fragments. The lagging strand has no been copied into many small strands of RNA, or Okazaki fragments. Next DNA polymerase comes along and replaces all the RNA nucleotides with DNA nucleotides. ANd finally DNA ligase 'stitches' all the small fragments into one long strand.

Related questions

At each replication fork one new strand of DNA is made of many small pieces what is the strand of DNA?

The lagging stand~Brainly


What is the definition of a lagging strand?

A lagging strand is one of two strands of DNA found at the replication fork, or junction, in the double helix; the other strand is called the leading strand. A lagging strand requires a slight delay before undergoing replication, and it must undergo replication discontinuously in small fragments.


What is an end replication problem?

The two strands of a DNA molecule are antiparallel to one another (the backbone of one strand runs from 5'-3' while the complimentary strand runs 3'-5'). Unfortunately, DNA polymerase, the enzyme responsible for replicating DNA, can only make DNA in a 5'-3' direction (and read DNA in the 3'-5' direction). Also, it needs a "primer" to give it a place to bind and start replication. So this creates a problem when synthesizing the 3'-5' stand because your enzyme will only synthesize 5'-3'. During replication this is solved by synthesizing small pieces of DNA ahead of the replication fork on the 5'-3' mother strand. Thus we have one daughter strand which is synthesized as a continuous piece of DNA (called the leading strand) and one daughter strand which is synthesized in small, discontinuous pieces (called the lagging strand). However, at the extreme end of the DNA, we run into another problem. The leading stand can be made to the very end, but the lagging strand cannot because you need the RNA primer upstream to begin each piece of the lagging strand DNA but at the end of the DNA there is nothing for this piece to attach to. Thus, the last section of the lagging strand cannot be synthesized and after several rounds of DNA replication, the DNA molecule gets smaller and smaller. This is "the end of replication problem" and it is solved by putting a DNA cap on the ends of DNA called a telomere which does not code for any protein, thus when this information is lost it does not have severe consequences for the cell.


Why is replication on one strand of DNA continuous while on the other strand the replication must be discontinuous?

New strands of DNA can only be created in one direction - 5' to 3'. This is because only the 3' end of the DNA is able to join to a new nucleotide. The two strands of DNA are antiparallel - meaning they run in different directions. Therefore only one strand (called the leading strand) is running in the correct direction for continuous replication. The other strand (called the lagging strand) must first be looped around so that small sections can be replicated in the correct direction.


What is replication forks?

A replication fork is the mechanism by which a strand of DNA is synthesized. If you can imagine a strand of DNA unwound, then it would resemble a ladder. Unzip the DNA and it now looks like a fork, ie fork in road, not eating fork. There is a Leading strand, which is synthesised easily. USing DNA polymerase which 'reads' along the strand in the 3' to 5' direction on the strand, producing a replication strand in the 5' to 3' direction. The opposite strand is called the lagging strand, and this is slightly more complicated. DNA polymerase cannot read in the 5' to 3' direction on the template strand. Thus DNA primase is used to read the strand and replicate small RNA segments, called Okazaki fragments. The lagging strand has no been copied into many small strands of RNA, or Okazaki fragments. Next DNA polymerase comes along and replaces all the RNA nucleotides with DNA nucleotides. ANd finally DNA ligase 'stitches' all the small fragments into one long strand.


Compare the leading and lagging strands during replication?

the leading strand is synthesized in the same direction as the movement of the replication fork, and the lagging strand is synthesized in the opposite direction


What plays an active role in protein synthesis?

I honestly think that it is a strand of RNA, or a small strand of DNA... Personally I think it is: A strand of RNA, but to be for sure go to Wiki and Look up DNA REPLICATION. Sorry for zero help. :/


What are small strand like structures called?

Fabric


What are small pieces of coal called?

small pieces of coal are called slack. Thank you!


Why are there many replication forks?

A replication fork is the mechanism by which a strand of DNA is synthesized. If you can imagine a strand of DNA unwound, then it would resemble a ladder. Unzip the DNA and it now looks like a fork, ie fork in road, not eating fork. There is a Leading strand, which is synthesised easily. USing DNA polymerase which 'reads' along the strand in the 3' to 5' direction on the strand, producing a replication strand in the 5' to 3' direction. The opposite strand is called the lagging strand, and this is slightly more complicated. DNA polymerase cannot read in the 5' to 3' direction on the template strand. Thus DNA primase is used to read the strand and replicate small RNA segments, called Okazaki fragments. The lagging strand has no been copied into many small strands of RNA, or Okazaki fragments. Next DNA polymerase comes along and replaces all the RNA nucleotides with DNA nucleotides. ANd finally DNA ligase 'stitches' all the small fragments into one long strand.


What are the small pieces of cauliflower called?

they are called florets


What are small pieces of matter called?

ATOMS