Yes, RNA does not have introns.
During the process of RNA splicing, introns are spliced out, while exons are joined together to form the mature mRNA molecule.
Before the RNA leaves the nucleus, the introns are removed and the exons are joined together, producing an mRNA molecule with a continuous coding sequence. This process is called RNA splicing.
The intervening sequences of RNA molecules that are cut out before the messenger RNA leaves the nucleus are called introns. These introns are non-coding sequences that are spliced out of the pre-mRNA during the process of RNA splicing, leaving only the exons to form the mature mRNA that is then transported to the cytoplasm for translation.
Introns are non-translated sections of a gene, i.e. they are not made into protein. The gene is stored in the chromosomes as DNA. When the corresponding protein is needed, the DNA is copied (transcribed) by RNA polymerase making a complementary copy of the gene made of RNA. This is then processed to remove the introns (the non-coding parts of the gene). It was long thought these introns hasdno use. However, there is evidence that they have a role in the processing of the RNA. In addition, introns allow more than one protein to be produced from a single gene. The RNA with the introns removed is now the messenger RNA (mRNA) which is transported out of the nucleus into the cytoplasm, where it is read by the ribosome, which produces the coded protein. See http://en.wikipedia.org/wiki/Intron
Introns are non-coding sequences within a gene that are transcribed but are later removed during RNA processing. Exons are the coding regions of a gene that are spliced together after introns are removed to form the mature mRNA transcript. This process is known as RNA splicing and is essential for producing functional proteins from genes.
Introns were copied and then removed from the RNA sequence because they were placeholders.
RNA splicing
introns
The introns are the sections which are spliced out to create the mature form of mRNA.
During the process of RNA splicing, introns are spliced out, while exons are joined together to form the mature mRNA molecule.
Before the RNA leaves the nucleus, the introns are removed and the exons are joined together, producing an mRNA molecule with a continuous coding sequence. This process is called RNA splicing.
mRNA
The intervening sequences of RNA molecules that are cut out before the messenger RNA leaves the nucleus are called introns. These introns are non-coding sequences that are spliced out of the pre-mRNA during the process of RNA splicing, leaving only the exons to form the mature mRNA that is then transported to the cytoplasm for translation.
Introns are non-translated sections of a gene, i.e. they are not made into protein. The gene is stored in the chromosomes as DNA. When the corresponding protein is needed, the DNA is copied (transcribed) by RNA polymerase making a complementary copy of the gene made of RNA. This is then processed to remove the introns (the non-coding parts of the gene). It was long thought these introns hasdno use. However, there is evidence that they have a role in the processing of the RNA. In addition, introns allow more than one protein to be produced from a single gene. The RNA with the introns removed is now the messenger RNA (mRNA) which is transported out of the nucleus into the cytoplasm, where it is read by the ribosome, which produces the coded protein. See http://en.wikipedia.org/wiki/Intron
Introns do not play a direct role in gene regulation, but they can affect gene expression by influencing alternative splicing, mRNA processing, and RNA stability. Certain introns contain regulatory elements that can impact the level of gene expression by affecting the efficiency of transcription and translation.
Yes, mitochondria have introns. These introns are non-coding sequences found within the DNA of the mitochondria. They are typically removed during the process of RNA splicing to produce functional mitochondrial mRNA.
Introns are non-coding sequences within a gene that are transcribed but are later removed during RNA processing. Exons are the coding regions of a gene that are spliced together after introns are removed to form the mature mRNA transcript. This process is known as RNA splicing and is essential for producing functional proteins from genes.