9 ATP and 6 NADPH overall. This energy is supplied by the light reactions from photosystem II and photosystem I. 6 ATP are reduced to 6 ADP in stage 1( fixation). The 6 NADPH are reduced to form 6 NADP+ in stage 2(reduction). The final 3 ATP are used in stage 3(regeneration of acceptor).
Cyclic photophosphorylation is when the electron from the chlorophyll went through the electron transport chain and return back to the chlorophyll. Noncyclic photophosphorylation is when the electron from the chlorophyll doesn't return back but incorporated into NADPH.
No, RuBP (ribulose-1,5-bisphosphate) is not produced during cyclic electron flow in the light reactions of photosynthesis. RuBP is a 5-carbon sugar molecule that plays a key role in the Calvin cycle, where it serves as the substrate for carbon fixation by Rubisco enzyme. Cyclic electron flow involves a cyclic pathway of electron transport to generate ATP without the release of oxygen or the production of NADPH.
The cyclic pathway of ATP formation primarily functions to transfer electrons between electron carriers in order to generate a proton gradient across the inner mitochondrial membrane. This proton gradient is used by ATP synthase to produce ATP from ADP and inorganic phosphate.
Cyclic electron flow in photosynthesis helps generate additional ATP molecules without producing NADPH. This provides extra energy for the Calvin cycle, helping to produce more sugar in the plant. Additionally, it can protect the plant from damage caused by excessive light, by dissipating excess energy as heat through the alternative pathway.
Light-dependent reactions occur in the thylakoid membrane and require light energy to produce ATP and NADPH. Light-independent reactions (Calvin Cycle) occur in the stroma and use ATP and NADPH to convert CO2 into glucose. Both processes are essential for photosynthesis and occur in chloroplasts.
No, non-cyclic electron flow does not directly produce ATP. It generates NADPH, which is used in the Calvin Cycle to produce ATP indirectly by providing reducing power for the synthesis of carbohydrates. ATP production occurs in cyclic electron flow by generating a proton gradient that drives ATP synthase.
non-cyclic electron pathways
yes
in non-cyclic the electrons do not return the source and the cyclic the electrons come back to the source. Mostly the non-cyclic process occurs to produce ATP AND NADH which will be used by the Calvin cycle to produce the carbohydrate but some times there occurs a cyclic process to produce ATP to cope up with Calvin cycle as it requires more ATP than the NADH In addition to the above, cyclic electron flow could operate independent of photosystem II. The production of oxygen and NADPH take place in non-cyclic electron flow and the system could switch to cyclic flow upon accumulation of oxygen and NADPH
The products of non-cyclic electron flow in photosynthesis are ATP (adenosine triphosphate) and NADPH (nicotinamide adenine dinucleotide phosphate). This process occurs during the light-dependent reactions of photosynthesis and helps to generate energy-rich molecules that are used in the Calvin cycle to produce glucose.
Yes, the light-dependent reaction of photosynthesis involves a cyclic flow of electrons between photosystem I and photosystem II. This cycle helps generate ATP and NADPH for the Calvin Cycle to produce glucose.
Pigment I & II systems of cyclic and non-cyclic phosphorylation.
6
Cyclic AMP accumulates when the glucose concentration is scarce. If the glucose concentration increases, the cAMP concentration falls, and without it, CAP (catabolite activator portein) detaches from the operon and becomes inactive.
Cyclic photophosphorylation is when the electron from the chlorophyll went through the electron transport chain and return back to the chlorophyll. Noncyclic photophosphorylation is when the electron from the chlorophyll doesn't return back but incorporated into NADPH.
No, RuBP (ribulose-1,5-bisphosphate) is not produced during cyclic electron flow in the light reactions of photosynthesis. RuBP is a 5-carbon sugar molecule that plays a key role in the Calvin cycle, where it serves as the substrate for carbon fixation by Rubisco enzyme. Cyclic electron flow involves a cyclic pathway of electron transport to generate ATP without the release of oxygen or the production of NADPH.
The cyclic pathways of photosynthesis produce ATP (adenosine triphosphate) through the process of cyclic photophosphorylation. This pathway involves the movement of electrons through the photosystem I in a cyclic manner, leading to the formation of ATP as an energy carrier for the cell.