In the genetic code, a sequence of three nucleotides forms a codon, which codes for one amino acid. So for each amino acid, there are three nucleotides. Therefore, 600 nucleotides are needed to make 200 amino acids.
300 nucleotides are needed to code for a polypeptide that is 100 amino acids long, because each amino acid is coded for by a sequence of 3 nucleotides (codon), and there are 100 amino acids in the polypeptide.
The order of amino acids in a polypeptide chain (protein) is determined by the order of nucleotide triplets in the messenger RNA, or mRNA, chain that was transcribed from the DNA inside the nucleus for that specific protein.
The linear sequence of amino acids in a polypeptide chain is called the primary structure. It is determined by the specific order of amino acids in the chain, which is encoded by the sequence of nucleotides in the gene that codes for the protein.
The order of amino acids in a polypeptide is determined by the sequence of codons in the mRNA. The genetic code determines that specific codons correspond to specific amino acids. The mRNA is read in sets of three nucleotides (codons), each of which codes for an amino acid, resulting in the correct sequence of amino acids in the polypeptide.
Polypeptides are chains of amino acids linked by peptide bonds.
To calculate the number of nucleotides required to code for a specific polypeptide, you need to know the number of amino acids in the polypeptide. Since each amino acid is coded by a codon made up of three nucleotides, you would need 3 times the number of amino acids to determine the total number of nucleotides required. For a 150 amino acid polypeptide, the number of nucleotides would be 150 (amino acids) * 3 (nucleotides per amino acid) = 450 nucleotides.
Essentially, yes. mRNA, which is made from nucleotides, have specific codons attached to them which codes for specific types of amino acids, which sort of guides the addition of amino acids to the polypeptide chain.
300 nucleotides are needed to code for a polypeptide that is 100 amino acids long, because each amino acid is coded for by a sequence of 3 nucleotides (codon), and there are 100 amino acids in the polypeptide.
The order of amino acids in a polypeptide chain (protein) is determined by the order of nucleotide triplets in the messenger RNA, or mRNA, chain that was transcribed from the DNA inside the nucleus for that specific protein.
The linear sequence of amino acids in a polypeptide chain is called the primary structure. It is determined by the specific order of amino acids in the chain, which is encoded by the sequence of nucleotides in the gene that codes for the protein.
The order of amino acids in a polypeptide is determined by the sequence of codons in the mRNA. The genetic code determines that specific codons correspond to specific amino acids. The mRNA is read in sets of three nucleotides (codons), each of which codes for an amino acid, resulting in the correct sequence of amino acids in the polypeptide.
Polypeptides are chains of amino acids linked by peptide bonds.
A polypeptide is a chain of amino acids linked together by peptide bonds. It is not a sequence of proteins, but rather a precursor to protein formation. When a polypeptide chain folds into a specific structure, it becomes a functional protein.
The maximum length of a polypeptide encoded by an mRNA is determined by the number of nucleotides in the mRNA sequence. Each amino acid is encoded by a set of three nucleotides called a codon. With a 45-nucleotide mRNA sequence, the maximum length of the polypeptide would be 45/3 = 15 amino acids.
The sequence of amino acids being added to the growing polypeptide chain is controlled by the instructions (codons, 3-base codes) on the mRNA. These are a copy of the coding regions of the gene from the DNA in the nucleus.
No, a polypeptide is not an amino acid. A polypeptide is a chain of amino acids linked together by peptide bonds. Amino acids are the building blocks of proteins and are the individual units that make up a polypeptide chain.
A linear stretch of DNA that specifies the sequence of amino acids in a polypeptide is called a gene. The primary function of DNA ligase is to seal new short stretches of nucleotides into one continuous strand.