I it AA in both parent
When Thomas Hunt Morgan mated fruit flies with specific genotypes, he observed deviations from the expected Mendelian ratios, indicating that certain traits were linked on the same chromosome. This led to the discovery of genetic linkage and the concept of gene mapping.
The parents were likely both heterozygous for seed color, with genotypes of Yy. This would result in a 3:1 phenotypic ratio of yellow to green seeds in the offspring, consistent with the observed 93:31 ratio.
A Punnett square provides the possible outcomes of a genetic cross based on the parents' genotypes. It helps predict the probability of different genotypes and phenotypes in the offspring. However, it does not guarantee the actual results, as genetic inheritance involves randomness.
The sex of your organism ofcoures!
The blending hypothesis was rejected as the method of inheritance because it could not explain the observed patterns of inheritance, especially the reappearance of traits in later generations that were not visible in the immediate offspring. Additionally, the blending hypothesis does not account for the variation observed in offspring that is more consistent with the principles of Mendelian genetics.
The number of observed offspring in a genetic cross can be determined by conducting controlled breeding experiments, where specific parental genotypes are crossed. The resulting offspring are then counted and recorded, typically using a Punnett square to predict expected ratios based on Mendelian inheritance. By comparing the actual number of offspring to the expected ratios, researchers can analyze inheritance patterns and gene interactions. This process helps in understanding the genetic makeup and traits of the offspring.
A phenotype is a physical characteristic. For a human an observed phenotype example would be hair colour (e.g brown) or eye colour (green). An observed phenotype is a physical characteristic that can be seen directly or indirectly (internal organs) caused by an individual's genotype.
To determine the genotypes of the parents in the pedigree, we need to analyze the possible combinations. The combinations of HH and Hh would produce offspring with either HH or Hh genotypes. The combination of HH and hh would produce offspring only with Hh genotypes. The combination of hh and hh would produce only hh offspring, while Hh and Hh would yield a mix of HH, Hh, and hh. Therefore, the possible genotypes of the parents could be HH and Hh, or Hh and Hh, depending on the offspring observed in the pedigree.
When Morgan mated fruit flies with the genotypes XrYr (homozygous for recessive traits on X and Y chromosomes) and XrY (heterozygous for the X chromosome), he observed a 1:1 ratio of offspring. The offspring would consist of XrYr and XrY genotypes, leading to a mix of phenotypes that correspond to the traits associated with those alleles. This experiment helped elucidate the principles of sex-linked inheritance in fruit flies.
When Thomas Hunt Morgan mated fruit flies with specific genotypes, he observed deviations from the expected Mendelian ratios, indicating that certain traits were linked on the same chromosome. This led to the discovery of genetic linkage and the concept of gene mapping.
The parents were likely both heterozygous for seed color, with genotypes of Yy. This would result in a 3:1 phenotypic ratio of yellow to green seeds in the offspring, consistent with the observed 93:31 ratio.
A Punnett square provides the possible outcomes of a genetic cross based on the parents' genotypes. It helps predict the probability of different genotypes and phenotypes in the offspring. However, it does not guarantee the actual results, as genetic inheritance involves randomness.
The chi-squared test is used to compare the observed results with the expected results. If expected and observed values are equal then chi-squared will be equal to zero. If chi-squared is equal to zero or very small, then the expected and observed values are close. Calculating the chi-squared value allows one to determine if there is a statistical significance between the observed and expected values. The formula for chi-squared is: X^2 = sum((observed - expected)^2 / expected) Using the degrees of freedom, use a table to determine the critical value. If X^2 > critical value, then there is a statistically significant difference between the observed and expected values. If X^2 < critical value, there there is no statistically significant difference between the observed and expected values.
In guinea pigs, the black coat color is typically determined by the dominant allele (B), while the brown coat color is determined by the recessive allele (b). When two Bb guinea pigs are crossed, the possible genotypes of the offspring are BB, Bb, Bb, and bb, resulting in a 3:1 phenotypic ratio. However, if all four offspring are black, it suggests that the bb genotype did not occur, possibly due to a selection bias in the observed offspring or an error in the initial assumption about the parents' genotypes.
Because Chi-squares are used to analyze and compare observed frequencies to expected frequencies, they can help trace the probability of an offspring receiving a certain phenotype and genotype from their parents.
The observed results were in line with the expected results, indicating that the hypothesis was supported. This suggests that the experiment was conducted correctly and the variables were controlled effectively.
The expected value of a Martingale system is the last observed value.