answersLogoWhite

0

To determine the genotypes of the parents in the pedigree, we need to analyze the possible combinations. The combinations of HH and Hh would produce offspring with either HH or Hh genotypes. The combination of HH and hh would produce offspring only with Hh genotypes. The combination of hh and hh would produce only hh offspring, while Hh and Hh would yield a mix of HH, Hh, and hh. Therefore, the possible genotypes of the parents could be HH and Hh, or Hh and Hh, depending on the offspring observed in the pedigree.

User Avatar

AnswerBot

1mo ago

What else can I help you with?

Related Questions

What are the possible genotypes of the parent of a child who has wavy hair?

HH and Hh; Hh & Hh;Hh &hh; HH & hh


A mother has Hh and a father has hh which genotype will make their child not have hair on the back of his or her hand?

H is a dominant trait for the hair color red. The trait for white hair is recessiv.The parents genotypes are HH x hh.What will the genotype of the offspring be?


When is the cells join is called?

What are the possible genotypes if the offspring of the fathers HH for a trait and the mothers hh


What is the punnett square for congenital hypothyroidism?

A Punnett square for congenital hypothyroidism, which is often inherited in an autosomal recessive manner, typically involves two parents who are carriers of the recessive allele (represented as "Hh"). In the Punnett square, the possible genotypes for their offspring would be HH (normal), Hh (carrier), and hh (affected). The ratios would be 1 HH : 2 Hh : 1 hh, indicating a 25% chance for a child to be affected by congenital hypothyroidism if both parents are carriers.


What is the phenotype of a man who has 2 parents with free hanging earlobes if one parent is homozygous and the other parent is heteroygous... what are his possible genotypes?

The man could have either free hanging or attached earlobes. His possible genotypes could be either homozygous for free hanging earlobes (LL) or heterozygous for free hanging and attached earlobes (Ll).


What is the genotype of Hh and hh?

The genotype "Hh" represents a heterozygous condition, where one allele is dominant (H) and the other is recessive (h). In contrast, "hh" is a homozygous recessive genotype, consisting of two copies of the recessive allele. These genotypes can influence the expression of traits, with "Hh" typically exhibiting the dominant phenotype and "hh" exhibiting the recessive phenotype.


How do you draw symbol for danger with text symbol?

´´´´´´´´´´´´´´´´´´´´´´hhhhhhhhhhhhhhh´´´´´´´´´´´´´´´´´´´´´´ ´´´´´´´´´´´´´´´´´hhhhhh´´´´´´´´´´´´´hhhhhh´´´´´´´´´´´´´´´´´ ´´´´´´´´´´´´´´hhhh´´´´´´´´´´´´´´´´´´´´´´´hhhh´´´´´´´´´´´´´´ ´´´´´´´´´´´´´hhh´´´´´´´´´´´´´´´´´´´´´´´´´´´´hhh´´´´´´´´´´´´ ´´´´´´´´´´´´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´´´´´´´´´´´ ´´´´´´´´´´´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´´´´´´´´´´ ´´´´´´´´´´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´´´´´´´´´´ ´´´´´´´´´´hh´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´hh´´´´´´´´´´ ´´´´´´´´´´hh´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´hh´´´´´´´´´´ ´´´´´´´´´´hh´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´hh´´´´´´´´´´ ´´´´´´´´´´hh´´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´hh´´´´´´´´´´ ´´´´´´´´´´hh´´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´´hh´´´´´´´´´´ ´´´´´´´´´´´hh´hh´´´hhhhhhhh´´´´´hhhhhhhh´´´hh´hh´´´´´´´´´´´ ´´´´´´´´´´´´hhhh hhhhhhhhhh´´´´´hhhhhhhhhh´hhhh´´´´´´´´´´´ ´´´´´´´´´´´´´hhh´hhhhhhhhhh´´´´´hhhhhhhhhh´hhh´´´´´´´´´´´´´ ´´´hhhh´´´´´´hh´´hhhhhhhhh´´´´´´´hhhhhhhhh´´hh´´´´´´hhhh´´´ ´´hhhhhh´´´´´hh´´´hhhhhhh´´´hhh´´´hhhhhhh´´´hh´´´´´hhhhhh´´ ´´hh´´´hh´´´´hh´´´´´hhh´´´´hhhhh´´´´hhh´´´´´hh´´´´hh´´´hh´´ ´ hhh´´´´ hhhh´´hh´´´´´´´´hhhhhhh´´´´´´´´hh´´hhhh´´´´ hhh´ hh´´´´´´´´hhhhhhhhh´´´´´´hhhhhhh´´´´´´hhhhhhhhh´´´´´´´´hh hhhhhhhh ´´´´´hhhhhhhh´´´´hhhhhhh´´´´hhhhhhhh´´´´´´hhhhhhhh ´hhhh´hhhhhh´´´´´hh hhh´´´´´´´´´´´´´´hhh´hh´´´´´hhhhhh´hhh´ ´´´´´´´´´´hhhhhh´´hhh´hh´´´´´´´´´´´hh´´hhh´´hhhhhh´´´´´´´´ ´´´´´´´´´´´´´´hhhhhh´hh´hhhhhhhhhhh´hh´hhhhhh´´´´´´´´´´´´´´ ´´´´´´´´´´´´´´´´´´hh´hh´h´h´h´h´h´h´hh´hh´´´´´´´´´´´´´´´´´ ´´´´´´´´´´´´´´´´hhhh´´h´h´h´h´h´h´h´h´´hhhh´´´´´´´´´´´´´´ ´´´´´´´´´´´´hhhhh´hh´´´hhhhhhhhhhhhh´´´hh´hhhhh´´´´´´´´´´´´ ´´´´hhhhhhhhh ´´´´´hh´´´´´´´´´´´´´´´´´hh´´´´´´hhhhhhhhh´´´´ ´´´hh´´´´´´´´´´´hhhhhhh´´´´´´´´´´´´´hhhhhhh´´´´´´´´´´ hh´´´ ´´´´hhh´´´´´hhhhh´´´´´hhhhhhhhhhhhhhh´´´´´hhhhh´´´´´hhh´´´´ ´´´´´´hh´´´hhh´´´´´´´´´´´hhhhhhhhh´´´´´´´´´´´hhh´´´hh´´´´´´ ´´´´´´hh´´hh´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´hh´´hh´´´´´´ ´´´´´´´hhhhh´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´´hhhh´´´´´´´


When hybrids are crossed what is the genotype of the offspring?

The term "hybrid" in biology means one who carries different alleles for the same trait. For example, a hybrid plant's genotype for height is Hh. When crossing two hybrids, we are performing this operation: Hh x Hh. The offsprings' genotypes can vary from: HH Hh hh


Two short haired guinea pigs are mated several times out of 100 offspring 25 of them have long hair what are the probable genotypes of the parents?

It's obvious from this problem that short hair is dominant in guinea pigs. In that case, if we have 25 out of 100 offspring that have long hair, then there is no doubt that the parents are heterozygous for short hair. If you use the punnet square, and hypothesize that both parents are heterozygous for short hair and long hair, you will get a 25% chance that the offspring will be long haired. So, the answer to this problem is that both parents are heterozygous. Let H = short hair and h = long hair. Hh dam x Hh sire gives us, according to the Punnet Square: 25% HH 50% Hh 25% hh


Which source of genetic variation produces the greatest variety?

Heterozygote X HeterozygoteEg.Hh X Hh- produces HH, 2 Hh, hh = 3 different genotypesWhereas:HH X hh- produces all HhAnd HH X HH- produces all HH


Could 2 people with a widows peak have a child with a straight hairline and could 2 people with a straight hairline have a child with a widows peak EXPLAIN?

Yes to the first one, no to the second one. Firstly, widow's peak is caused by a dominant gene while a straight hairline is caused by a recessive gene. Let 'H' be dominant and 'h' be recessive. So for a dominant gene, the trait still will be expressed whether the genotype of the person is homozygous dominant(HH) or heterozygous(Hh). For a recessive gene however, the trait will only be expressed when the genotype of the person is homozygous recessive (hh). So two people with a widow's peak CAN have a child with a stright hairline, provided both of their genotypes are Hh. This is because by crossing their genotypes, they can have a possibility of having child with the genotype HH(widow's peak), Hh(widow's peak), and also hh(straight hairline). The ratio of these three possibilities however, are 1:2:1. So the odds of having a child with a straight hairline in this case is 1:3. If the two people who have widow's peak have the genotype HH or one of them HH and the other Hh, then the possibility of having a child with a straight hairline is 0. This is because by crossing their genotypes together, the genotype of the child will either be HH for the first case, and HH or Hh for the second case. For two people who have a straight hairline, the genotype of both will definitely be homozygous recessive (hh), thus child will definitely have the recessive gene. Therefore, it is not possible for two people with straight hairline to have a child with widow's peak.


In cattle the hornless condition (H) is dominant and the horned condition (h) is recessive. A bull without horns is crossed with a cow with horns. Of the four offspring one (1) is horned and three (3)?

In this scenario, the bull without horns has the genotype HH or Hh, while the cow with horns must have the genotype hh since horned is recessive. Since one offspring is horned (hh), the bull must be heterozygous (Hh) to produce this result. Therefore, the offspring genotypes are one horned (hh) and three without horns (Hh), reflecting the dominant trait of hornlessness in the bull.