answersLogoWhite

0

Oxidative phosphorylation is involved as a pathway with ATP.Although the many forms of life on earth use a range of different nutrients, almost all carry out oxidative phosphorylation to produce ATP, the molecule that supplies energy to metabolism. This pathway is probably so pervasive because it is a highly efficient way of releasing energy, compared to alternative fermentation processes such as anaerobic glycolysis.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Biology

In fermentation is ATP produced by substrate level phosphorylation or oxidative phosphorylation or both or neither?

ATP in fermentation is typically produced by substrate-level phosphorylation, which involves the direct transfer of a phosphate group to ADP from a phosphorylated substrate. Oxidative phosphorylation, which involves the use of an electron transport chain to produce ATP, is not generally involved in fermentation.


What is the opposite of oxidative phosphorylation?

The opposite of oxidative phosphorylation is not a specific biological process, as it refers to the metabolic pathway that occurs in mitochondria to generate ATP from ADP using oxygen. However, an anaerobic process like fermentation can be considered as an alternative to oxidative phosphorylation.


What are the two steps in aerobic respiration that produce ATP?

The two steps in aerobic respiration that produce ATP are glycolysis and oxidative phosphorylation. Glycolysis generates a small amount of ATP directly, while oxidative phosphorylation, which occurs in the mitochondria, produces the majority of ATP through the electron transport chain and ATP synthase.


What is oxidative phosphorylation and what is its purpose?

Oxidative phosphorylation occurs in order to produce energy in the form of ATP. It occurs after chemiosmosis, in which a concentration gradient of hydrogen ions is created in the mitochondria between the matrix and the intermembrane space. As the hydrogen ions flow across this gradient, ADP and Pi are combined and ATP is produced. Hope this helps!


How many ATP molecules are produced by oxidative phosphorylation for each glucose that enters glycolysis?

Approximately 30-32 molecules of ATP are produced by oxidative phosphorylation for each glucose molecule that enters glycolysis.

Related Questions

In fermentation is ATP produced by substrate level phosphorylation or oxidative phosphorylation or both or neither?

ATP in fermentation is typically produced by substrate-level phosphorylation, which involves the direct transfer of a phosphate group to ADP from a phosphorylated substrate. Oxidative phosphorylation, which involves the use of an electron transport chain to produce ATP, is not generally involved in fermentation.


What is the opposite of oxidative phosphorylation?

The opposite of oxidative phosphorylation is not a specific biological process, as it refers to the metabolic pathway that occurs in mitochondria to generate ATP from ADP using oxygen. However, an anaerobic process like fermentation can be considered as an alternative to oxidative phosphorylation.


Why oxidative phosphorylation is a reversible reaction?

Oxidative phosphorylation is not typically considered a reversible reaction in the context of cellular respiration because it involves the synthesis of ATP from ADP and inorganic phosphate. While some of the individual reactions within the process may be reversible under certain conditions, the overall process of oxidative phosphorylation is a unidirectional energy-producing pathway in which ATP is generated.


What are the two steps in aerobic respiration that produce ATP?

The two steps in aerobic respiration that produce ATP are glycolysis and oxidative phosphorylation. Glycolysis generates a small amount of ATP directly, while oxidative phosphorylation, which occurs in the mitochondria, produces the majority of ATP through the electron transport chain and ATP synthase.


What is oxidative pathway?

The oxidative pathway is a metabolic process that involves the breakdown of nutrients to generate energy in the form of adenosine triphosphate (ATP) through the use of oxygen. This pathway occurs primarily in the mitochondria of cells and involves processes such as glycolysis, the citric acid cycle, and oxidative phosphorylation. It is essential for providing energy for various cellular functions.


Is oxidative phosphorylation necessary for metabolism function?

Yes, oxidative phosphorylation is a vital part of cellular metabolism as it produces the majority of ATP in aerobic organisms. ATP is the primary energy source for cellular processes, making oxidative phosphorylation crucial for overall metabolism function.


What is oxidative phosphorylation and what is its purpose?

Oxidative phosphorylation occurs in order to produce energy in the form of ATP. It occurs after chemiosmosis, in which a concentration gradient of hydrogen ions is created in the mitochondria between the matrix and the intermembrane space. As the hydrogen ions flow across this gradient, ADP and Pi are combined and ATP is produced. Hope this helps!


Which process is not part of cellular respiration pathway that produces large amounts od ATP in a cell?

Glycolysis is the process that is not part of cellular respiration pathway that produces large amounts of ATP in a cell. While glycolysis produces some ATP, the majority of ATP production occurs in the citric acid cycle and oxidative phosphorylation.


How many ATP molecules are produced by oxidative phosphorylation for each glucose that enters glycolysis?

Approximately 30-32 molecules of ATP are produced by oxidative phosphorylation for each glucose molecule that enters glycolysis.


What metabolic pathway generates 36 ATP from a single glucose molecule?

The aerobic cellular respiration pathway generates 36 ATP from a single glucose molecule. This process involves glycolysis, the citric acid cycle, and oxidative phosphorylation in the mitochondria to produce ATP through the electron transport chain.


Products of oxidative phosphorylation?

The products of oxidative phosphorylation are ATP, which is the main energy currency in cells, as well as water. Oxygen is the final electron acceptor in the electron transport chain, and it is reduced to form water as a byproduct.


Which way of making ATP needs mitochondria?

I'm thinking its oxidative phosphorylation