DNA is made of of two complimentary strands, the coding strand and the template strand. When DNA is transcribed (made into messenger RNA which can be converted by ribosomes into proteins) the DNA splits open and free nucleotide bases bind to the template strand. DNA is made of T/C/G/A and RNA is made of U/C/G/A nucleotide bases. G and C bind (they are said to be 'complimentary') A and T bind and in RNA U and A bind (so U replaces T.) The newly formed RNA strand (made on the template stand of DNA) is 'complimentary' to the template but the same as the coding strand of DNA. Hence the template is used to produce RNA which is a copy of the coding strand. Either strand of DNA can act as the template/coding strand.
Hope that is a little bit helpful!
Two new DNA chains are formed at the end of DNA replication, both identical in sequence to the template (or parent) chain. These chains are composed of 2 complimentary strands. It is important to note that of the newly formed DNA chains, one strand is the same as the template strand and the other one is a newly synthesized one.
Replication forks tend to unwind the DNA helix, separate the double strands, and synthesize new strands of DNA in opposite directions. They are formed during DNA replication and move along the DNA template strands as replication progresses.
RNA polymerase is the enzyme that binds to the DNA promoter region and separates the DNA strands during transcription. It then synthesizes an mRNA molecule using one of the strands as a template.
Yes. Also, of the two strands of DNA, only one is the template that will be transcribed, while the other strand is a noncoding strand of DNA.
The enzyme that binds to DNA and separates the DNA strands during transcription is RNA polymerase. It is responsible for synthesizing a complementary RNA strand using one of the DNA strands as a template. This process is essential for gene expression and protein synthesis.
Two new DNA chains are formed at the end of DNA replication, both identical in sequence to the template (or parent) chain. These chains are composed of 2 complimentary strands. It is important to note that of the newly formed DNA chains, one strand is the same as the template strand and the other one is a newly synthesized one.
Two strands of DNA are used to make complementary DNA during the process of DNA replication. This involves separating the two original DNA strands and using each as a template to build a new complementary strand.
The strand used as a template for mRNA during transcription is called the antisense strand. The DNA strand not used as a template is called the sense strand.Read more: What_are_the_two_DNA_strands
Replication forks tend to unwind the DNA helix, separate the double strands, and synthesize new strands of DNA in opposite directions. They are formed during DNA replication and move along the DNA template strands as replication progresses.
Two strands of DNA are used to make complementary strands of DNA. One original strand serves as a template for the synthesis of a new strand, resulting in a double-stranded DNA molecule with base pairing between the original and newly synthesized strands.
Refers to semi-conservative replication of DNA. One strand of the old DNA is used as a template to replicate the other, new, strand of DNA. Thus you have four from two, but two of the four are old strands while the other two strands are new. Thus the name semi-conservative replication.
RNA polymerase is the enzyme that binds to the DNA promoter region and separates the DNA strands during transcription. It then synthesizes an mRNA molecule using one of the strands as a template.
A complementary strand of DNA contains the template information for the creation of a new copy of the other strand. How is it determined?
Yes. Also, of the two strands of DNA, only one is the template that will be transcribed, while the other strand is a noncoding strand of DNA.
The enzyme that binds to DNA and separates the DNA strands during transcription is RNA polymerase. It is responsible for synthesizing a complementary RNA strand using one of the DNA strands as a template. This process is essential for gene expression and protein synthesis.
The DNA molecule itself serves as a template for replication. During DNA replication, the two strands of the double helix separate, and each strand serves as a template for the synthesis of a new complementary strand, resulting in the formation of two identical DNA molecules.
DNA replication is a semi-conservative process where the double-stranded DNA molecule unwinds and each strand serves as a template for the synthesis of a new complementary strand. DNA polymerase enzymes read the template strands and add nucleotides to form the new strands, resulting in two identical copies of the original DNA molecule.