The DNA molecule itself serves as a template for replication. During DNA replication, the two strands of the double helix separate, and each strand serves as a template for the synthesis of a new complementary strand, resulting in the formation of two identical DNA molecules.
The template for semiconservative replication is the original DNA strand that serves as a guide for creating a new complementary strand. During DNA replication, each original parental strand acts as a template for the synthesis of a new daughter strand.
No, protein synthesis does not occur during replication. Replication is the process of copying DNA, while protein synthesis occurs during transcription and translation, where DNA is used as a template to create proteins.
The two proteins used during DNA replication are DNA polymerase and DNA helicase. DNA polymerase adds nucleotides to the growing DNA strand, while DNA helicase unwinds the double helix structure of DNA to expose the template strands for replication.
In DNA replication, the double-stranded DNA molecule serves as a template for the creation of a new complementary strand. The process involves breaking the hydrogen bonds between the two strands and using each strand as a template for the synthesis of a new complementary strand.
The original DNA molecule is the template for the new DNA molecules.
The template for semiconservative replication is the original DNA strand that serves as a guide for creating a new complementary strand. During DNA replication, each original parental strand acts as a template for the synthesis of a new daughter strand.
Yes, DNA replication occurs in the 5' to 3' direction on the template strand.
AGCAT
A strand of DNA
No, protein synthesis does not occur during replication. Replication is the process of copying DNA, while protein synthesis occurs during transcription and translation, where DNA is used as a template to create proteins.
Replication is the term used to describe the process of copying DNA. Or perhaps transcription.
During DNA replication, the template strand is used as a guide to create a complementary copy, while the coding strand is not directly involved in the copying process. The template strand determines the sequence of nucleotides in the new DNA strand, while the coding strand has the same sequence as the RNA transcript that will be produced from the new DNA strand.
During DNA replication, DNA polymerase moves along the template strand in the 3' to 5' direction.
Retro virus has reverse transcription in its replication cycle. In other words, rna is template for synthesis of dna. With dna virus, there is no reverse transcription in the replication cycle. Dna is the template for dna synthesis.
The two proteins used during DNA replication are DNA polymerase and DNA helicase. DNA polymerase adds nucleotides to the growing DNA strand, while DNA helicase unwinds the double helix structure of DNA to expose the template strands for replication.
The enzyme responsible for reading the DNA template and adding complementary base pairs during DNA replication is called DNA polymerase.
DNA replication involves the synthesis of a new DNA strand using the existing DNA as a template, while RNA replication involves the synthesis of RNA using DNA as a template. DNA replication is highly accurate due to proofreading mechanisms, while RNA replication is less accurate. Additionally, DNA replication occurs in the nucleus, while RNA replication can occur in the nucleus or cytoplasm.