answersLogoWhite

0

What all the ideal non-real conditions of the Hardy-Weinberg equilibrium predict; no evolution takes place. Mating is assortative, non-random in the real world and sexual selection is at work when assortative mating takes place, thus evolution.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Biology

When a population is not evolving what is it called?

When a population is not evolving, it is called being in genetic equilibrium. This means that the frequency of alleles in the population remains constant from generation to generation. Evolution requires changes in allele frequencies, so genetic equilibrium indicates no evolution is occurring.


What does being in Hardy-Weinberg equilibrium mean for a population?

The Hardy-Weinberg equilibrium is a principle stating that the genetic variation in a population will remain constant from one generation to the next in the absence of disturbing factors. When mating is random in a large population with no disruptive circumstances, the law predicts that both genotype and allele frequencies will remain constant because they are in equilibrium.


What happens when a population in hardy weinberg equilibrium?

The phenotype frequency does not change


Why don't gene frequencies change from one generation to the next?

Gene frequencies may remain stable between generations due to factors such as random mating, large population size, absence of gene flow, absence of mutations, and absence of natural selection. When these factors are in play, genetic equilibrium is maintained, and gene frequencies do not change significantly from one generation to the next.


The frequencies of alleles and genotypes remain constant from generation to generation unless?

Unless there are factors such as mutation, genetic drift, gene flow, or natural selection that can cause changes in allele frequencies within a population. This concept is known as the Hardy-Weinberg equilibrium, which describes the conditions under which allele and genotype frequencies remain stable over time in a population.

Related Questions

A population in which allele frequencies do not change from generation to generation is said to be in?

A population in which the allele frequencies do not change from one generation to the next is said to be in equilibrium.


When allelic frequencies remain unchanged a population is in genetic eqilibrium this statement expresses what?

This statement refers to the Hardy-Weinberg equilibrium principle, which states that in the absence of evolutionary forces, allele frequencies in a population will remain constant from generation to generation. This equilibrium condition can be used as a null hypothesis to assess whether a population is evolving.


When a population is not evolving what is it called?

When a population is not evolving, it is called being in genetic equilibrium. This means that the frequency of alleles in the population remains constant from generation to generation. Evolution requires changes in allele frequencies, so genetic equilibrium indicates no evolution is occurring.


What is the type of equilibrium that occurs when allele frequencies do not change?

The type of equilibrium where allele frequencies do not change is called Hardy-Weinberg equilibrium. This equilibrium occurs in an idealized population where certain assumptions are met, such as random mating, no mutation, no migration, no natural selection, and a large population size. In Hardy-Weinberg equilibrium, the genotype frequencies can be predicted using the allele frequencies.


What does being in Hardy-Weinberg equilibrium mean for a population?

The Hardy-Weinberg equilibrium is a principle stating that the genetic variation in a population will remain constant from one generation to the next in the absence of disturbing factors. When mating is random in a large population with no disruptive circumstances, the law predicts that both genotype and allele frequencies will remain constant because they are in equilibrium.


What happens when a population in hardy weinberg equilibrium?

The phenotype frequency does not change


Why don't gene frequencies change from one generation to the next?

Gene frequencies may remain stable between generations due to factors such as random mating, large population size, absence of gene flow, absence of mutations, and absence of natural selection. When these factors are in play, genetic equilibrium is maintained, and gene frequencies do not change significantly from one generation to the next.


The frequencies of alleles and genotypes remain constant from generation to generation unless?

Unless there are factors such as mutation, genetic drift, gene flow, or natural selection that can cause changes in allele frequencies within a population. This concept is known as the Hardy-Weinberg equilibrium, which describes the conditions under which allele and genotype frequencies remain stable over time in a population.


How do allele frequencies change in Hardy-Weinberg equilibrium?

In Hardy-Weinberg equilibrium, allele frequencies remain constant from generation to generation if certain conditions are met. These conditions include no mutation, no gene flow, random mating, a large population size, and no natural selection. If these conditions are not met, allele frequencies can change due to factors such as genetic drift, gene flow, mutation, non-random mating, or natural selection.


What is population at equilibrium in science?

If something is said to be in equilbrium it means that is in its optimum environment and that it is functioning as efficently as possible. All the things that an organism needs are being met yet all the things that organism doesn't need are not being met. So a balance is produced meaning that the organism can thrive.


What is the name of the principle stating that allele frequencies will remain constant unless factors cause them to change?

The principle is called the Hardy-Weinberg equilibrium. It states that in the absence of evolutionary forces such as mutation, selection, gene flow, or genetic drift, allele frequencies will remain constant from generation to generation in a population.


What is genetic equilibrium and how does it describe a population in which the allele frequencies remain constant and do not change over time?

Genetic equilibrium is a state in which the allele frequencies in a population remain constant and do not change over time. This means that the population is not evolving and there is no change in the genetic makeup of the population.