DNA Polymerase III is responsible for adding new nucleotides to the strand being synthesised.
Also involved in DNA replication are DNA Polymerase I which replaces primers with nucleotides, and DNA Ligase which joins fragments of DNA together.
During DNA replication, proteins called DNA polymerases help to copy the DNA strands by adding new nucleotides to the existing strands. Other proteins, like helicases and topoisomerases, unwind and stabilize the DNA strands to allow for replication to occur smoothly. Proteins also help in proofreading and repairing any mistakes that may occur during the replication process.
During replication, enzymes called helicases unwind and separate the DNA strands by breaking the hydrogen bonds between the base pairs. This process creates a replication fork where new complementary strands are synthesized.
During genetic replication, two DNA strands are typically involved.
During replication, the DNA strands are separated by an enzyme called helicase. Helicase unwinds the double helix structure of DNA, breaking the hydrogen bonds between the base pairs and allowing the strands to separate for replication to occur.
Replication forks tend to unwind the DNA helix, separate the double strands, and synthesize new strands of DNA in opposite directions. They are formed during DNA replication and move along the DNA template strands as replication progresses.
During DNA replication, proteins called DNA polymerases help to copy the DNA strands by adding new nucleotides to the existing strands. Other proteins, like helicases and topoisomerases, unwind and stabilize the DNA strands to allow for replication to occur smoothly. Proteins also help in proofreading and repairing any mistakes that may occur during the replication process.
During replication, enzymes called helicases unwind and separate the DNA strands by breaking the hydrogen bonds between the base pairs. This process creates a replication fork where new complementary strands are synthesized.
During genetic replication, two DNA strands are typically involved.
During replication, the DNA strands are separated by an enzyme called helicase. Helicase unwinds the double helix structure of DNA, breaking the hydrogen bonds between the base pairs and allowing the strands to separate for replication to occur.
yes
Replication forks tend to unwind the DNA helix, separate the double strands, and synthesize new strands of DNA in opposite directions. They are formed during DNA replication and move along the DNA template strands as replication progresses.
Helicase is an enzyme that unwinds the double-stranded DNA during replication, while polymerase is an enzyme that synthesizes new DNA strands by adding nucleotides to the template strand. In simpler terms, helicase unzips the DNA, while polymerase builds new strands.
The replication fork is a structure formed during DNA replication where the parental DNA strands are separated and new complementary strands are synthesized. It allows for the simultaneous synthesis of two new DNA strands in opposite directions. The replication fork moves along the DNA strand as replication proceeds.
During DNA replication, the entire DNA molecule is copied. This involves separating the two strands of the DNA double helix and creating two new complementary strands using the existing strands as templates. The end result is two identical copies of the original DNA molecule.
two identical strands of DNA
During DNA replication, replication bubbles form when the DNA double helix unwinds and separates into two strands. Enzymes called helicases unwind the DNA, creating a replication fork where new DNA strands can be synthesized. This process allows for multiple replication bubbles to form along the DNA molecule, enabling efficient and accurate replication.
No, RNA polymerase is not used in both leading and lagging strands of DNA replication. RNA polymerase is responsible for transcribing DNA into RNA during gene expression, while DNA polymerase is responsible for synthesizing new DNA strands during replication. DNA polymerase is used on both the leading and lagging strands during DNA replication.