RNA polymerase matches a base on the DNA to a RNA nucleotide(by complementary base pair binding) and then adds that new nucleotide to the elongating mRNA strand.
A messenger RNA strand is released from RNA polymerase. This strand is a complementary copy of the DNA message and can now move to the process of translation
If the repressor protein is not bound to the proper site on a gene, it would not block the RNA polymerase from transcribing the gene. This would lead to the expression of the gene, as the RNA polymerase can then proceed with transcription.
RNA polymerase is guided to the correct place -apex
Like prokaryotes, eukaryotes must regulate gene expression. This is accomplished primarily by controlling when RNA polymerase binds to the beginning of a gene. This binding cannot take place in eukaryotes without the aid of transcription factor.
No, DNA polymerase is not used in the process of transcription. Transcription is the process of making an RNA copy of a gene from DNA, and it is carried out by an enzyme called RNA polymerase. DNA polymerase is primarily involved in the process of DNA replication.
The promoter region in DNA helps RNA polymerase recognize the start of a gene. The promoter contains specific sequences that serve as binding sites for RNA polymerase, allowing it to initiate transcription of the gene. Transcription factors also play a role in assisting RNA polymerase in recognizing and binding to the promoter region.
If the repressor protein is not bound to the proper site on a gene, it would not block the RNA polymerase from transcribing the gene. This would lead to the expression of the gene, as the RNA polymerase can then proceed with transcription.
RNA polymerase binds to the promoter region of a gene in order to initiate transcription.
RNA polymerase is guided to the correct place -apex
Like prokaryotes, eukaryotes must regulate gene expression. This is accomplished primarily by controlling when RNA polymerase binds to the beginning of a gene. This binding cannot take place in eukaryotes without the aid of transcription factor.
The transcription process stops.mRNA detaches and moves to the ribosomesTranscription is the first step of gene expression, in which a particular segment of DNA is copied into RNA by the enzyme RNA polymerase.
No, DNA polymerase is not used in the process of transcription. Transcription is the process of making an RNA copy of a gene from DNA, and it is carried out by an enzyme called RNA polymerase. DNA polymerase is primarily involved in the process of DNA replication.
The transcription process stops.mRNA detaches and moves to the ribosomesTranscription is the first step of gene expression, in which a particular segment of DNA is copied into RNA by the enzyme RNA polymerase.
When a repressor is bound to the operator, it physically blocks the RNA polymerase from binding to the promoter region of the gene, preventing transcription. This mechanism effectively shuts down gene expression by inhibiting the initiation of transcription of that specific gene.
RNA polymerase reaches the end of a gene.
The promoter region in DNA helps RNA polymerase recognize the start of a gene. The promoter contains specific sequences that serve as binding sites for RNA polymerase, allowing it to initiate transcription of the gene. Transcription factors also play a role in assisting RNA polymerase in recognizing and binding to the promoter region.
Transcription in prokaryotic cells begins when RNA polymerase binds to the promoter region of a gene. This binding allows RNA polymerase to start synthesizing mRNA based on the DNA template strand. The initiation of transcription is a critical step that involves recognizing specific DNA sequences and recruiting necessary factors for gene expression.
Enhancers increase transcription in gene regulation by binding to specific transcription factors, which then interact with the promoter region of a gene. This interaction helps to recruit RNA polymerase and other transcriptional machinery, leading to an increase in the rate of transcription of that gene.