The enzyme that breaks the hydrogen bonds during DNA replication is called helicase.
During DNA replication, the enzyme helicase breaks the hydrogen bonds between the two strands of DNA, allowing the strands to separate and be copied.
The enzyme responsible for breaking hydrogen bonds during DNA replication is called DNA helicase.
Helicase and RNA polymerase separate DNA strands by breaking the hydrogen bonds between complementary bases.Helicase parts the strands of DNA during DNA replication, and RNA polymerase parts them during transcription.The enzyme that separates DNA in called DNA helicases. There are two of them that work away from the origin of replication, creating in "bubble" in the DNA molecule. For eukaryotes, there would be several origins of replication but in prokaryotes, there is only one origin of replication.
Helicase is the enzyme responsible for unwinding the DNA double helix during DNA replication. Helicase breaks the hydrogen bonds between the base pairs, allowing the two strands to separate and serve as templates for the new DNA strands.
The enzyme responsible for unzipping the DNA double helix during replication is called helicase. Helicase breaks the hydrogen bonds between the base pairs, allowing the DNA strands to separate and be copied.
During DNA replication, the enzyme helicase breaks the hydrogen bonds between the two strands of DNA, allowing the strands to separate and be copied.
The enzyme responsible for breaking hydrogen bonds during DNA replication is called DNA helicase.
Helicase and RNA polymerase separate DNA strands by breaking the hydrogen bonds between complementary bases.Helicase parts the strands of DNA during DNA replication, and RNA polymerase parts them during transcription.The enzyme that separates DNA in called DNA helicases. There are two of them that work away from the origin of replication, creating in "bubble" in the DNA molecule. For eukaryotes, there would be several origins of replication but in prokaryotes, there is only one origin of replication.
DNA helicase is an enzyme that breaks hydrogen bonds between base pairs in a DNA double helix during processes such as DNA replication or DNA repair. This action helps to separate the two DNA strands and allows access for other enzymes to work on the DNA molecule.
Helicase is the enzyme responsible for unwinding the DNA double helix during DNA replication. Helicase breaks the hydrogen bonds between the base pairs, allowing the two strands to separate and serve as templates for the new DNA strands.
Helicase enzyme breaks hydrogen bonds between base pairs in DNA strands to unwind the double helix structure. Polymerase enzyme breaks the bonds between nucleotides in the DNA strand being replicated, allowing for the addition of new nucleotides during DNA replication.
The enzyme responsible for unzipping the DNA double helix during replication is called helicase. Helicase breaks the hydrogen bonds between the base pairs, allowing the DNA strands to separate and be copied.
It is an enzyme that breaks down Hydrogen Peroxide.
Helicase is the enzyme responsible for unwinding the double-stranded DNA molecule during DNA replication. It breaks the hydrogen bonds between the nitrogenous bases, separating the two strands and allowing for the replication process to occur.
The enzyme helicase breaks hydrogen bonds in DNA.
the DNA polymerase III
During DNA replication, hydrogen bonds between base pairs are broken by an enzyme called DNA helicase. This enzyme unwinds the double helix structure of DNA, separating the two strands. This allows for new complementary nucleotides to be added during the replication process.