answersLogoWhite

0

I think both the techniques can be used to observe different organelles in a cell.
Transverse electron microscope is relatively cheaper but does not produce high quality images of the sample. On the other hand, scanning electron microscope cost a lot but gives high quality images and is also more detailed.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Biology

What microscope is used to view an organelle?

An electron microscope is typically used to view organelles, as it provides a higher resolution and can visualize smaller structures compared to a light microscope. Transmission electron microscopes (TEM) are often used to view organelles at high magnifications.


Which type of microscope allows you to see inside the cell (organelles) 3D images or bacteria?

An electron microscope, particularly a transmission electron microscope (TEM), allows you to see inside the cell and view organelles in detail. It provides high magnification and resolution to observe the internal structures of cells. However, bacteria can also be visualized using a light microscope or a scanning electron microscope (SEM).


What is the difference between TEM and SEM microscopes?

Transmission electron microscopes (TEM) use a beam of electrons transmitted through a thin sample to create an image, while scanning electron microscopes (SEM) use a beam of electrons scanned across the surface of a sample to create an image. TEM provides higher resolution images of internal structures, while SEM provides detailed surface images.


What is the difference between a scanning electron microscope (SEM) and a transmission electron microscope (TEM)?

A scanning electron microscope (SEM) uses a focused beam of electrons to create detailed surface images of a sample, while a transmission electron microscope (TEM) transmits electrons through a thin sample to create detailed internal images. SEM is used for surface analysis, while TEM is used for studying internal structures at a nanoscale level.


What kind of microscope can be used to study organelles?

An electron microscope is typically used to study organelles due to its high magnification and resolution, allowing for detailed visualization of the structures within cells. Transmission electron microscopy (TEM) is commonly used to observe internal organelles, while scanning electron microscopy (SEM) can provide three-dimensional images of the external features of organelles.

Related Questions

Difference in resolution between SEM and TEM?

SEM 7nm or less TEM 0.5nm


How do tem and sem images of the same organism differ?

TEM images only have a view of the inner structure and are black and white so scientists don't actually know the colour of cells.SEM images are essentially a magnifies view of the specimens outer structure and are also black and white.Though both images can be contrasted via computers to add colour to see images more clearly


What microscope is used to view an organelle?

An electron microscope is typically used to view organelles, as it provides a higher resolution and can visualize smaller structures compared to a light microscope. Transmission electron microscopes (TEM) are often used to view organelles at high magnifications.


Which type of microscope allows you to see inside the cell (organelles) 3D images or bacteria?

An electron microscope, particularly a transmission electron microscope (TEM), allows you to see inside the cell and view organelles in detail. It provides high magnification and resolution to observe the internal structures of cells. However, bacteria can also be visualized using a light microscope or a scanning electron microscope (SEM).


Why microemulsions are analyzed by TEM not by SEM?

Microemulsions are analysed in SEM in cryogenic mode. In that mode it is difficult to get a resolution of order of 40-50 nm(which is the typical domain size of microemulsions). So TEM is a better option


How do electrons microscopes differ TEM vs. SEM?

Transmission electron microscopes (TEM) transmit electrons through a thin sample to create a detailed image of its internal structure, while scanning electron microscopes (SEM) scan a focused beam of electrons across the surface of a sample to create a 3D image of its topography. TEM is used for detailed imaging of internal structures at a nanometer scale, while SEM is used for surface imaging and analysis.


What is the difference between TEM and SEM microscopes?

Transmission electron microscopes (TEM) use a beam of electrons transmitted through a thin sample to create an image, while scanning electron microscopes (SEM) use a beam of electrons scanned across the surface of a sample to create an image. TEM provides higher resolution images of internal structures, while SEM provides detailed surface images.


Compare the process used to produce a TEM and an SEM?

The process used to produce TEM will cut cells and tissues in to ultra-thin slices so that they can be viewed under the microscope. However, the ones on SEM do not need to be cut as they can easily be visualized.


What tools are necessary to see and manipulate at the nanoscale?

SEM, TEM, and AFM are modern imaging techniques.


What is the difference between a scanning electron microscope (SEM) and a transmission electron microscope (TEM)?

A scanning electron microscope (SEM) uses a focused beam of electrons to create detailed surface images of a sample, while a transmission electron microscope (TEM) transmits electrons through a thin sample to create detailed internal images. SEM is used for surface analysis, while TEM is used for studying internal structures at a nanoscale level.


Advantages and disadvantages of SEM and TEM?

In SEM (Scanning Electron Microscopy) you look at either backscattered or secondary electrones whereas in TEM (Transmission Electron Microscopy) you look how much of your electron beam makes it through the sample onto your phosphor screen or film camera. Usually SEM is used for surface analysis and TEM for analyzing sections.


What are the types of electronic microscope?

1.Scanning electron microscope (SEM) 2.Transmission electron microscope (TEM)