A DNA strand grows only in the 5' to 3' direction because the enzyme that builds the new strand, called DNA polymerase, can only add new nucleotides to the 3' end of the existing strand. This is due to the structure of the nucleotides and the way they are connected in the DNA molecule.
DNA can only be synthesized in the 5' to 3' direction because the enzyme responsible for DNA replication, DNA polymerase, can only add new nucleotides to the 3' end of the growing DNA strand. This results in the formation of a new DNA strand that is complementary to the original template strand.
During DNA replication, a new DNA strand elongates only in the 5' to 3' direction because DNA polymerase can only add nucleotides to the 3' end of the growing strand. This is due to the structure of the DNA molecule and the way the nucleotides are arranged.
During DNA replication, a new DNA strand elongates only in the 5' to 3' direction because DNA polymerase can only add nucleotides to the 3' end of the growing strand. This is due to the structure of the DNA molecule and the way the nucleotides are arranged.
DNA strands are synthesized in the 5' to 3' direction because the enzyme responsible for building the new DNA strand, DNA polymerase, can only add new nucleotides to the 3' end of the growing strand. This results in the DNA strand being synthesized in a specific direction.
DNA is synthesized in the 5' to 3' direction because the enzymes responsible for DNA replication can only add new nucleotides to the 3' end of the growing DNA strand. This results in the formation of a new DNA strand that is complementary to the original template strand.
DNA can only be synthesized in the 5' to 3' direction because the enzyme responsible for DNA replication, DNA polymerase, can only add new nucleotides to the 3' end of the growing DNA strand. This results in the formation of a new DNA strand that is complementary to the original template strand.
During DNA replication, a new DNA strand elongates only in the 5' to 3' direction because DNA polymerase can only add nucleotides to the 3' end of the growing strand. This is due to the structure of the DNA molecule and the way the nucleotides are arranged.
During DNA replication, a new DNA strand elongates only in the 5' to 3' direction because DNA polymerase can only add nucleotides to the 3' end of the growing strand. This is due to the structure of the DNA molecule and the way the nucleotides are arranged.
DNA strands are synthesized in the 5' to 3' direction because the enzyme responsible for building the new DNA strand, DNA polymerase, can only add new nucleotides to the 3' end of the growing strand. This results in the DNA strand being synthesized in a specific direction.
DNA is synthesized in the 5' to 3' direction because the enzymes responsible for DNA replication can only add new nucleotides to the 3' end of the growing DNA strand. This results in the formation of a new DNA strand that is complementary to the original template strand.
One strand of DNA that faces the opposite direction of the other strand is called the "antiparallel strand." In double-stranded DNA, one strand runs in the 5' to 3' direction, while the complementary strand runs in the 3' to 5' direction. This antiparallel arrangement is crucial for the processes of DNA replication and transcription.
The 5' to 3' orientation in DNA replication is significant because DNA polymerase can only add nucleotides in the 5' to 3' direction. This means that the new DNA strand can only be synthesized in one direction, leading to the formation of a continuous leading strand and a discontinuous lagging strand during replication.
DNA polymerase moves along the DNA strand in the 3' to 5' direction during replication by adding new nucleotides to the growing strand in a continuous manner. It reads the template strand in the 3' to 5' direction and synthesizes the new strand in the 5' to 3' direction. This process ensures accurate replication of the DNA molecule.
DNA synthesis occurs in the 5' to 3' direction because the enzyme responsible for building new DNA strands, DNA polymerase, can only add nucleotides to the 3' end of the growing strand. This results in the DNA strand being synthesized in the 5' to 3' direction.
During DNA synthesis, new nucleotides are added to the growing DNA strand in the 5' to 3' direction. This means that nucleotides are added to the 3' end of the existing strand, as DNA polymerase can only add nucleotides in this direction. This process ensures that the new DNA strand is synthesized in the correct orientation and maintains the genetic information encoded in the original DNA template.
DNA replication occurs in the 5' to 3' direction. This means that new nucleotides are added to the growing strand at the 3' end, while the template strand is read in the opposite direction, from 3' to 5'. This directionality is essential for the accurate synthesis of DNA and is facilitated by the enzyme DNA polymerase.
Transcription is unidirectional because you are copying only ONE side of the DNA. Remember that DNA is a double stranded helical structure. One strand of DNA is complementary to the other strand.