During DNA replication, a new DNA strand elongates only in the 5' to 3' direction because DNA polymerase can only add nucleotides to the 3' end of the growing strand. This is due to the structure of the DNA molecule and the way the nucleotides are arranged.
Chat with our AI personalities
During DNA replication, a new DNA strand elongates only in the 5' to 3' direction because DNA polymerase can only add nucleotides to the 3' end of the growing strand. This is due to the structure of the DNA molecule and the way the nucleotides are arranged.
During DNA replication, DNA polymerase moves along the template strand in the 3' to 5' direction.
DNA polymerase moves along the DNA strand in the 3' to 5' direction during replication by adding new nucleotides to the growing strand in a continuous manner. It reads the template strand in the 3' to 5' direction and synthesizes the new strand in the 5' to 3' direction. This process ensures accurate replication of the DNA molecule.
A DNA molecule splits in the 5' to 3' direction during replication. Each strand acts as a template for the synthesis of a new complementary strand.
The leading strand is the DNA strand that is synthesized continuously during DNA replication. This is because the polymerase enzyme can add nucleotides in the 5' to 3' direction without interruption as the replication fork opens.