One liter of a one molar solution of NaOH in water contains 40g of NaOH. The quantity must be known.
To dissolve 2 moles of NaOH in 6 kg of water, you would need to calculate the molarity of the NaOH solution. First, you would find the molar mass of NaOH (40 g/mol) and then divide the moles by the mass of water in kg to find the molarity. This would be approximately 0.33 mol/L.
0.1 M NaOH is prepared by dissolving sodium hydroxide (NaOH) pellets or flakes in water to make a 0.1 molar solution. This means there are 0.1 moles of NaOH dissolved in 1 liter of water. The molarity of the solution is calculated using the formula: Molarity = moles of solute / liters of solution.
To calculate the grams of NaOH in the solution, first determine the moles of NaOH using the molarity and volume. Then, convert moles to grams using the molar mass of NaOH. The molar mass of NaOH is 40 g/mol.
A 50% NaOH aqueous solution means that the solution contains 50% sodium hydroxide (NaOH) by weight and the rest is water. This concentration indicates that for every 100 grams of the solution, 50 grams is NaOH.
To prepare a 1N NaOH solution, you would need to dissolve 40 grams of NaOH in water to make 1 liter of solution. This amount is used because 1N solution means 1 mole of NaOH per liter of solution, and the molar mass of NaOH is 40 g/mol, so 40 grams of NaOH is needed to have 1 mole in 1 liter of solution.
To dissolve 2 moles of NaOH in 6 kg of water, you would need to calculate the molarity of the NaOH solution. First, you would find the molar mass of NaOH (40 g/mol) and then divide the moles by the mass of water in kg to find the molarity. This would be approximately 0.33 mol/L.
0.1 M NaOH is prepared by dissolving sodium hydroxide (NaOH) pellets or flakes in water to make a 0.1 molar solution. This means there are 0.1 moles of NaOH dissolved in 1 liter of water. The molarity of the solution is calculated using the formula: Molarity = moles of solute / liters of solution.
To calculate the grams of NaOH in the solution, first determine the moles of NaOH using the molarity and volume. Then, convert moles to grams using the molar mass of NaOH. The molar mass of NaOH is 40 g/mol.
6 molar
A 50% NaOH aqueous solution means that the solution contains 50% sodium hydroxide (NaOH) by weight and the rest is water. This concentration indicates that for every 100 grams of the solution, 50 grams is NaOH.
It is 2.5 molar. The reason for this is that molarity means moles per litre. You have to multiply by 5 to get from 200ml to a litre, so you have to do the same with the moles.
The answer is 0,625 moles.
C1V1 = C2V24 x .04 = 1 x V2V2 = (4 x .04)/1= 160mLTherefore the volume of water that needs to be added is 120mL (minus the original volume).
To prepare a 1N NaOH solution, you would need to dissolve 40 grams of NaOH in water to make 1 liter of solution. This amount is used because 1N solution means 1 mole of NaOH per liter of solution, and the molar mass of NaOH is 40 g/mol, so 40 grams of NaOH is needed to have 1 mole in 1 liter of solution.
The molarity of NaOH solution is 0.010 mol/L. To find the mass, you need to multiply the molarity by the molar mass of NaOH. The molar mass of NaOH is approximately 40 g/mol. Therefore, the mass of NaOH in 2.5 L of 0.010 M solution is 1 g.
1. Weigh 20 g NaOH. 2. Put this NaOH in a 1 L volumetric flask. 3. Add slowly 200 mL distilled water and stir. 4. Put the flask in a thermostat at 20 0C and maintain for 1 hour. 5. Add distilled water up to the mark. Stir vigorously. 6. Standardize the solution by titration with oxalic acid, potassium hydrogen phtalate, etc. 7. Transfer the solution in a bottle and apply a label (date, name of the operator, name of the solution, normality).
1.0 mole NaOH / kg water = 1.0 molal NaOHThe conversions of molality, b, to and from the molarity , c,for one-solute solutions are:c = ρ.b / [1 + b.M]andb = c / [ρ -c.M]where ρ is the mass density of the solution, b is the molality, and M is the molar mass of the solute.