answersLogoWhite

0

The calculation fraction of enzyme bound to substrate is used when determining the Michaelisâ??Menten equation. It is widely used in the enzyme kinetics.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Chemistry

How do you determine Vmax in enzyme kinetics?

Vmax is the maxim initial velocity (Vo) that an enzyme can achieve. Initial velocity is defined as the catalytic rate when substrate concentration is high, enough to saturate the enzyme, and the product concentration is low enough to neglect the rate of the reverse reaction. Therefore, the Vmax is the maximum catalytic rate that can be achieved by a particular enzyme. Km is determined as the substrate concentration at which 1/2 Vmax is achieved. This kinetic parameter therefore importantly defines the affinity of the substrate for the enzyme. These two parameters for a specific enzyme defines: Vmax - the rate at which a substrate will be converted to product once bound to the enzyme. Km - how effectively the enzyme would bind he substrate, hence affinity.


What happens to the reaction rate as the enzyme concentration is increased?

As enzyme concentration increases, the reaction rate usually increases because there are more enzyme molecules available to catalyze the reaction. This is because enzymes can bind to more substrate molecules simultaneously, leading to a greater frequency of successful collisions and faster conversion to product. However, once all substrate molecules are bound to enzymes (enzyme saturation), further increases in enzyme concentration will not significantly affect the reaction rate.


Example of membrane bound enzymes?

Membrane bound enzymes are enzymes in a membrane that are responsible for the maintenance of cellular functions such as ion transport, secretion and uptake of a variety of substances, as well as cell to cell interactions. A membrane-bound organelle is an organelle surrounded by a plasma membrane.


What happens if an inhibitor is irreversible?

Irreversible inhibition refers to the inactivation of an enzyme by a tightly, typically covalent, bound inhibitor. The kinetics for irreversible inhibition do not follow competitive or non-competitive kinetics.


Difference between activator and prosthetic groups?

Prosthetic groups can be as simple as a single metal ion bound into the enzyme's structure, or may be a more complicated organic molecule (which might also contain a metal ion). it is permanently bonded to enzyme. Activator is only metal ion that is detachable. source:chemguide.co.uk Stuffidious.com

Related Questions

Where does an uncompetitive inhibitor bind in relation to the enzyme-substrate complex?

An uncompetitive inhibitor binds to the enzyme-substrate complex after the substrate has already bound to the enzyme.


When the substrates are bound to the enzyme it is called the?

An active site. Sometimes the active site can be disabled from inhibitors.


Synthesis of an inducible enzyme requires?

Substrate bound to a repressor Chris G.


This is a modification of the lock and key model that suggests the active site of an enzyme is continually reshaped by interactions with the substrate until the substrate is completely bound and the c?

This concept is known as the induced fit model of enzyme-substrate interaction. It proposes that the active site of an enzyme can change its shape slightly to better accommodate the substrate, leading to optimal binding and catalysis. The binding of the substrate induces a conformational change in the enzyme, enhancing its activity.


Why would you expect the rate of an enzyme-catalyzed reaction to increase proportionately to enzyme concentration given an unlimited supply of substrate?

No, since the reaction reaches a max rate depending on the speed of which the Enzyme bonds to the substrate and the speed at which the enzyme catalyzes the reaction to produce enzyme and product (shown below). E + S --> ES (E - enzyme, S - substrate, P - products) ES --> E + P Thus, if each reaction rate is not equal to each other, the rate of the overall reaction is not only proportional to both the concentration of enzyme and substrate.


What can Tobin conclude about the relationship between the enzyme concentration and the reaction rate in the presence of excess substrate?

Tobin can conclude that the reaction rate is directly proportional to the enzyme concentration when excess substrate is present. This is because at higher enzyme concentrations, all substrate molecules are already bound to enzyme active sites, leading to a maximal reaction rate even with excess substrate.


What is the saturation point in an enzymatic reaction called?

The saturation point in an enzymatic reaction is called Vmax, which represents the maximum rate of reaction when all enzyme active sites are bound to substrate molecules. At Vmax, the enzyme is saturated with substrate and the rate of the reaction cannot increase further with an increase in substrate concentration.


What is the simple definition of saturation kinetics in biochemistry?

Saturation Kinetics- an enzyme reaction in which there is enough enzymes to constantly have a substrate bound them and therefore the reaction is occurring at Vmax. This velocity is only limited by the concentration of substrates, not the enzyme.


How do you determine Vmax in enzyme kinetics?

Vmax is the maxim initial velocity (Vo) that an enzyme can achieve. Initial velocity is defined as the catalytic rate when substrate concentration is high, enough to saturate the enzyme, and the product concentration is low enough to neglect the rate of the reverse reaction. Therefore, the Vmax is the maximum catalytic rate that can be achieved by a particular enzyme. Km is determined as the substrate concentration at which 1/2 Vmax is achieved. This kinetic parameter therefore importantly defines the affinity of the substrate for the enzyme. These two parameters for a specific enzyme defines: Vmax - the rate at which a substrate will be converted to product once bound to the enzyme. Km - how effectively the enzyme would bind he substrate, hence affinity.


What happens to the reaction rate as the enzyme concentration is increased?

As enzyme concentration increases, the reaction rate usually increases because there are more enzyme molecules available to catalyze the reaction. This is because enzymes can bind to more substrate molecules simultaneously, leading to a greater frequency of successful collisions and faster conversion to product. However, once all substrate molecules are bound to enzymes (enzyme saturation), further increases in enzyme concentration will not significantly affect the reaction rate.


What blocks enzyme activity by binding to the active site of an enzyme?

Competitive inhibitors reduce enzyme activity by binding (in competition with the enzyme's substrate) to the active site. These inhibitors may be reversible or irreversible. With reversible inhibitors, which may release the enzyme, concentrations much higher than the concentration of the substrate would be required to completely block enzyme activity, and even then one or two reactions may take place over long periods of time. With irreversible inhibitors, which permanently attach to the enzyme, enzyme activity could be completely blocked when the amount of inhibitor matches the amount of enzyme. Competitive inhibition reduces the enzymes ability to bind substrate (so it lowers the KM) but does not alter the maximum rate (very high substrate concentrations would out compete for enzyme binding).Other types of inhibitors work in other ways. Non-competitive inhibitors bind to the enzyme on a site other than the active site. These too may be reversible or irreversible. Binding does not compete with substrate, so concentrations to completely block enzyme activity do not have to be as high as reversible competitive inhibitors. Non-competitive inhibition reduces the apparent maximum rate for the enzyme.Uncompetitive inhibitors bind only when the substrate is also bound to the enzyme (they bind to the enzyme-substrate complex). Both the maximum rate and substrate binding affinities appear lower.


Compare enzyme activity with a lock and key?

Lock and key is an analogy of enzyme catalysis in a cellular reaction. The lock and key are compared directly to the substrate and enzyme, because of the high specificity of their physical shape. Enzymes participate in the reaction they catalyze. The reactant molecule (substrate) binds to the enzyme molecule at a particular location called the active site. (this is compared to the lock with keyhole) The highly specific nature of an enzyme is due to very precisely defined arrangement of atoms in the active site(again, this is the lock in the analogy). The substrate molecule must have a matching shape (here is the key) that will fit into the active site. The bond breaking and bond forming processes that transform the substrate into products occur while the substrate is bound to the active site of enzyme. In other words its something like a jigsaw puzzle where the substrate fits into the enzyme. The reaction occurs and the substrate then leaves the enzyme as products. ( Not my work. Found it on Yahoo Answers.....Do not give me credit...Thought I should do this to help people out =] ) Edited answer for readability and clarity - thanks!