_ _ /Br - Br/ _ _
Br2 + 3NaHSO3 = 2NaBr + NaHSO4 + H2O + 2SO2
44.0 grams Br2 ? 44.0 grams Br2 (1 mole Br2/159.8 grams)(6.022 X 10^23/1 mole Br2)(1 mole Br2 atoms/6.022 X 10^23) = 0.275 moles of Br2 atoms
Yes, Br2 is an oxidizing agent.
Ca + Br2 = CaBr2 doesn't need to be balanced.
To calculate the mass of 4.89 x 10^20 molecules of Br2, you need to use the molar mass of Br2, which is 159.808 g/mol. Calculate the number of moles of Br2: 4.89 x 10^20 molecules / 6.022 x 10^23 molecules/mol = 8.13 x 10^-4 moles Use the formula mass = moles x molar mass to find the mass: mass = 8.13 x 10^-4 moles x 159.808 g/mol ≈ 0.130 g
Br2 + 3NaHSO3 = 2NaBr + NaHSO4 + H2O + 2SO2
44.0 grams Br2 ? 44.0 grams Br2 (1 mole Br2/159.8 grams)(6.022 X 10^23/1 mole Br2)(1 mole Br2 atoms/6.022 X 10^23) = 0.275 moles of Br2 atoms
There are two bromine atoms in Br2
The balanced equation for the reaction between zinc (Zn) and bromine (Br2) is: Zn + Br2 -> ZnBr2.
2 Na + Br2 --> 2 NaBr
C8H16 + Br2 -> C8H16Br2
3.387mL Br2
Yes, Br2 is an oxidizing agent.
Ca + Br2 = CaBr2 doesn't need to be balanced.
To calculate the mass of 4.89 x 10^20 molecules of Br2, you need to use the molar mass of Br2, which is 159.808 g/mol. Calculate the number of moles of Br2: 4.89 x 10^20 molecules / 6.022 x 10^23 molecules/mol = 8.13 x 10^-4 moles Use the formula mass = moles x molar mass to find the mass: mass = 8.13 x 10^-4 moles x 159.808 g/mol ≈ 0.130 g
Bromine (Br2) is a liquid at room temperature and pressure.
To find the number of moles in 44.0 g of Br2, you need to divide the given mass by the molar mass of Br2. The molar mass of Br2 is approximately 159.808 g/mol. Therefore, 44.0 g Br2 is equal to 0.275 moles.