Yes.
The number of lines in the emission spectrum is the same as in the absorption spectrum for a given element. The difference lies in the intensity of these lines; in emission, they represent light being emitted, while in absorption, they represent light being absorbed.
For one thing, atomic absorption equipment is basically a fancier version of flame emission equipment (I'm unaware of any instrument capable of doing AA that can't also do FE), and flame emission doesn't require you to change tubes every time you want to check for another element.
flame photometry is a type of atomic EMISSION spectroscopy. The sample is excited (raised to a high temperature), causing the emission of light. the wavelength of the emitted light is a function of the energy of the excited electrons, so each element has a characteristic set of wavelengths. usually a single wavelength is detected and the intensity of the emission is used to calculate concentration. Atomic adsorption works in the reverse way. A light of a standard wavelength (a wavelength characteristic of the target element) is passed through a flame containing the unknown substance, and the concentration of the target element is determined by the reduction in the energy of this light as it passes through the flame. the light is adsorbed by the electrons in the target element, kicking them into a higher orbit or completely out of the atom, depending on the energy involved. basically, one method involves the emission of the energy as an excited electron kicks back down to a lower state, and the other involves the adsorption of energy as an electron is kicked up an energy state. Same basic principle-change in electron energy relates to light of a specified wavelength and the change in the amount of that light can be measured and converted to a concentration.
Emission spectra are called the fingerprints of the elements because each element emits light at specific wavelengths unique to that element. These specific wavelengths create distinct lines in the spectrum that can be used to identify the presence of a particular element in a sample, similar to how fingerprints can be used to identify a person.
Emission spectra are bright-line spectra, absorption spectra are dark-line spectra. That is: an emission spectrum is a series of bright lines on a dark background. An absorption spectrum is a series of dark lines on a normal spectrum (rainbow) background.
Each chemical element has a specific emission or absorption spectrum.
The number of lines in the emission spectrum is the same as in the absorption spectrum for a given element. The difference lies in the intensity of these lines; in emission, they represent light being emitted, while in absorption, they represent light being absorbed.
The absorption spectrum of an element have lines in the same places as in its emission spectrum because each line in the emission spectrum corresponds to a specific transition of electrons between energy levels. When light is absorbed by the element, electrons move from lower energy levels to higher ones, creating the same lines in the absorption spectrum as the emission spectrum. The frequencies of light absorbed and emitted are the same for a specific element, resulting in matching lines.
For one thing, atomic absorption equipment is basically a fancier version of flame emission equipment (I'm unaware of any instrument capable of doing AA that can't also do FE), and flame emission doesn't require you to change tubes every time you want to check for another element.
flame photometry is a type of atomic EMISSION spectroscopy. The sample is excited (raised to a high temperature), causing the emission of light. the wavelength of the emitted light is a function of the energy of the excited electrons, so each element has a characteristic set of wavelengths. usually a single wavelength is detected and the intensity of the emission is used to calculate concentration. Atomic adsorption works in the reverse way. A light of a standard wavelength (a wavelength characteristic of the target element) is passed through a flame containing the unknown substance, and the concentration of the target element is determined by the reduction in the energy of this light as it passes through the flame. the light is adsorbed by the electrons in the target element, kicking them into a higher orbit or completely out of the atom, depending on the energy involved. basically, one method involves the emission of the energy as an excited electron kicks back down to a lower state, and the other involves the adsorption of energy as an electron is kicked up an energy state. Same basic principle-change in electron energy relates to light of a specified wavelength and the change in the amount of that light can be measured and converted to a concentration.
Emission spectra are called the fingerprints of the elements because each element emits light at specific wavelengths unique to that element. These specific wavelengths create distinct lines in the spectrum that can be used to identify the presence of a particular element in a sample, similar to how fingerprints can be used to identify a person.
When an energized atom of a specific element releases energy, it emits light in the form of photons. This process is known as emission of light.
Emission spectra are bright-line spectra, absorption spectra are dark-line spectra. That is: an emission spectrum is a series of bright lines on a dark background. An absorption spectrum is a series of dark lines on a normal spectrum (rainbow) background.
All hot solids or dense enough gases emit black body radiation. Gases that are not very dense are are cold absorb particular wavelengths while gases that are not dense but are hot produce their characteristic emission spectrum.
It requires a certain amount of energy to raise an electron from a specific level to another specific level; the same amount of energy is released again if it falls back down. One - the electron moving up an energy level - corresponds to the absorption of energy; the other - the electron falling down - corresponds to the emission of energy.
The emission spectrum of elements is a unique pattern of colored lines produced when an element is heated or excited. Each element has its own distinct emission spectrum, which can be used to identify the element.
ICP-MS allows multi-element analysis. It has a longer linear working range so fewer standards for calibration is needed as they can be spaced further apart. ICP-MS also has a higher sensitivity compared to atomic emission spectrometry or atomic absorption spectrometry.