It depends on the type of structure; simple covalent structures (like water) generally have low boiling points, while giant covalent structures (like diamond) have high boiling points.
Covalent structures have high melting points because the covalent bonds between atoms are strong and require a significant amount of energy to break. This high energy barrier results in a high melting point for covalent structures.
Giant covalent structures, such as diamond and graphite, do not have a specific boiling point because their atoms are held together by strong covalent bonds that require high temperatures to break. These structures do not boil in the traditional sense like molecular substances but rather decompose or undergo phase transitions at extremely high temperatures.
This is because they have extremely strong covalent bonds that operate in 3D and firmly hold together all the atoms in the lattice structure. Why the bonds are so strong? Probably (and don't quote me here) because the bonds are extremely stable as a result of hybridisation. Consequently, a lot of energy is required to break or even weaken these bonds, hence the exceptionally high melting and boiling points,
The covalent melting and boiling points are generally lower than those of ionic compounds due to weaker intermolecular forces between covalent molecules. These forces include London dispersion forces, dipole-dipole interactions, and hydrogen bonding. The actual melting and boiling points vary depending on the specific molecules involved.
In general, covalent compounds have lower boiling points than ionic compounds. This is because covalent compounds have weaker intermolecular forces compared to the strong electrostatic forces between ions in ionic compounds. As a result, less energy is required to overcome the intermolecular forces in covalent compounds, leading to lower boiling points.
Covalent structures have high melting points because the covalent bonds between atoms are strong and require a significant amount of energy to break. This high energy barrier results in a high melting point for covalent structures.
Giant covalent structures, such as diamond and graphite, do not have a specific boiling point because their atoms are held together by strong covalent bonds that require high temperatures to break. These structures do not boil in the traditional sense like molecular substances but rather decompose or undergo phase transitions at extremely high temperatures.
elements of same shape have different boiling points because their bonding may vary! the elements with covalent bonds will have high boiling point!
This is because they have extremely strong covalent bonds that operate in 3D and firmly hold together all the atoms in the lattice structure. Why the bonds are so strong? Probably (and don't quote me here) because the bonds are extremely stable as a result of hybridisation. Consequently, a lot of energy is required to break or even weaken these bonds, hence the exceptionally high melting and boiling points,
The covalent melting and boiling points are generally lower than those of ionic compounds due to weaker intermolecular forces between covalent molecules. These forces include London dispersion forces, dipole-dipole interactions, and hydrogen bonding. The actual melting and boiling points vary depending on the specific molecules involved.
high boiling point low melting point
In general, covalent compounds have lower boiling points than ionic compounds. This is because covalent compounds have weaker intermolecular forces compared to the strong electrostatic forces between ions in ionic compounds. As a result, less energy is required to overcome the intermolecular forces in covalent compounds, leading to lower boiling points.
A covalent network structure has strong covalent bonds throughout the entire structure, resulting in high melting and boiling points, as well as hardness. In contrast, a molecular structure has weaker intermolecular forces between molecules, leading to lower melting and boiling points, and softer properties.
It's due to the facts that simple covalent bonds like single bonds are weaker and longer than others bonds with tighter interactions like pi bonds (double bonds) or ionic bonds. Once the heat is turned up it excites the electrons to move from their bonded positions and the bond breaks
well ionic substances are solid at room temperature,they are generally soluble in water ,they have high melting and boiling points,while covalent substances are generally liquid and gases at room temperature,non-polar covalent substances are generally insoluble in water while polar covalent are generally soluble in water
Ionic bonds are strong electrostatic forces of attraction between oppositely charged ions, resulting in high melting and boiling points. Covalent bonds involve the sharing of electron pairs between atoms, leading to the formation of molecules with moderate to low melting and boiling points, depending on the type of covalent bond.
No they have high melting and boiling points. Don't get confused with simple molecular structures such as water and carbon dioxide which have simple covalent structures. When you heat them you are overcoming the forces BETWEEN THE MOLECULES (intermolecular/van der waals forces of attraction), NOT the actual covalent bonds themselves, like the bond betwen the C and either O in carbon dioxide.